Operational space control of 6DOF robot arm with spiking cameras part 1: Getting access to the arm through Python

From June 9th to the 19th we ran a summer school (brain camp) in our lab with people from all over to come and learn how to use our neural modeling software, Nengo, and then work on a project with others in the school and people from the lab. We had a bunch of fun hardware available, from neuromorphic hardware from the SpiNNaker group over at Cambridge to lego robots on omni-wheels to spiking cameras (i’ll discuss what a spiking camera is exactly in part 3 of this series) and little robot arms. There were a bunch of awesome projects, people built neural models capable of performing a simplified version of the Wisconsin card sorting task that they then got running on the SpiNNaker boards, a neural controller built to move a robot leech, a spiking neurons reinforcement-learning system implemented on SpiNNaker with spiking cameras to control the lego robot that learned to move towards green LEDs and avoid red LEDs, and a bunch of others. If you’re interested in participating in these kinds of projects and learning more about this I highly suggest you apply to the summer school for next year!

I took the summer school as a chance to break from other projects and hack together a project. The idea was to take the robot arm, implement an operational space controller (i.e. find the Jacobian), and then used spiking cameras to track an LED and have the robot arm learn how to move to the target, no matter where the cameras were placed, by learning the relationship between where the target is in camera-centric coordinates and arm-centric coordinates. This broke down into several steps: 1) Get access to the arm through Python, 2) derive the Jacobian to implement operational space control, 3) sample state space to get an approximation of the camera-centric to arm-centric function, 4) implement the control system to track the target LED.

Here’s a picture of the set-up during step 3, training.
spiking-cameras-6DOF-arm
So in the center is the 6DOF robot arm with a little LED attached to the head, and highlighted in orange circles are the two spiking cameras, expertly taped to the wall with office-grade scotch tape. You can also see the SpiNNaker board in the top left as a bonus, but I didn’t have enough time to involve it in this project.

I was originally going to write this all up as one post, because the first two parts are re-implementing previous posts, but even skimming through those steps it was getting long and I’m sure no one minds having a few different examples to look through for generating Cython code or deriving a Jacobian. So I’m going to break this into a few parts. Here in this post we’ll work through the first step (Cython) of our journey.

Get access to the arm through Python

The arm we had was the VE026A Denso training robot, on loan from Dr. Bryan Tripp of the neuromorphic robotics lab at UW. Previously an interface had been built up by one of Dr. Tripp’s summer students, written in C. C is great and all but Python is much easier to work with, and the rest of the software I wanted to work you know what I’m done justifying it Python is just great so Python is what I wanted to use. The end.

So to get access to the arm in Python I used the great ol’ C++ wrapper hack described in a previous post. Looking at Murphy-the-summer-student’s C code there were basically three functions I needed access to:

// initialize threads, connect to robot
void start_robot(int *semid, int32_t *ctrlid, int32_t *robotid, float **angles)
// send a set of joint angles to the robot servos
void Robot_Execute_slvMove(int32_t robotid, float j1, float j2, float j3, float j4, float j5, float j6, float j7, float j8)
// kill threads, disconnect from robot
void stop_robot(int semid, int32_t ctrlid, int32_t robotid)

So I changed the extension of the file to ‘.cpp’ (I know, I know, I said this was a hack!), fixed some compiler errors that popped up, and then appended the following to the end of the file:

/* A class to contain all the information that needs to
be passed around between these functions, and can
encapsulate it and hide it from the Python interface.

Written by Travis DeWolf (June, 2015)
*/

class Robot {
/* Very simple class, just stores the variables
* needed for talking to the robot, and a gives access
* to the functions for moving it around */

int semid;
int32_t ctrlid;
int32_t robotid;
float* angles;

public:
Robot();
~Robot();
void connect();
void move(float* angles_d);
void disconnect();
};

Robot::Robot() { }

Robot::~Robot() { free(angles); }

/* Connect to the robot, get the ids and current joint angles */
/* char* usb_port: the name of the port the robot is connected to */
void Robot::connect()
{
start_robot(&semid, &ctrlid, &robotid, &angles);
printf("%i %i %i", robotid, ctrlid, semid);
}

/* Move the robot to the specified angles */
/* float* angles: the target joint angles */
void Robot::move(float* angles)
{
// convert from radians to degrees
Robot_Execute_slvMove(robotid,
angles[0] * 180.0 / 3.14,
angles[1] * 180.0 / 3.14,
angles[2] * 180.0 / 3.14,
angles[3] * 180.0 / 3.14,
angles[4] * 180.0 / 3.14,
angles[5] * 180.0 / 3.14,
angles[6] * 180.0 / 3.14,
angles[7] * 180.0 / 3.14);
}

/* Disconnect from the robot */
void Robot::disconnect()
{
stop_robot(semid, ctrlid, robotid);
}

int main()
{
Robot robot = Robot();
// connect to robot
robot.connect();

// move robot to some random target angles
float target_angles[7] = {0, np.pi / 2.0, 0.0, 0, 0, 0, 0};
robot.move(target_angles);

sleep(1);

// disconnect
robot.disconnect();

return 0;
}

So very simple class. Basically just wanted to create a set of functions to hide some of the unnecessary parameters from Python, do the conversion from radians to degrees (who works in degrees? honestly), and have a short little main function to test the creation of the class, and connection, movement, and disconnection of the robot. Like I said, there were a few compiler errors when switching from C to C++, but really that was the only thing that took any time on this part. A few casts and everything was gravy.

The next part was writing the Cython pyRobot.pyx file (I describe the steps involved in this in more detail in this post):

import numpy as np
cimport numpy as np

cdef extern from "bcap.cpp":
cdef cppclass Robot:
Robot()
void connect()
void move(float* angles)
void disconnect()

cdef class pyRobot:
cdef Robot* thisptr

def __cinit__(self):
self.thisptr = new Robot()

def __dealloc__(self):
del self.thisptr

def connect(self):
"""
Set up the connection to the robot, pass in a vector,
get back the current joint angles of the arm.
param np.ndarray angles: a vector to store current joint angles
"""
self.thisptr.connect()

def move(self, np.ndarray[float, mode="c"] angles):
"""
Step the simulation forward one timestep. Pass in target angles,
get back the current arm joint angles.
param np.ndarray angles: 7D target angle vector
"""
self.thisptr.move(&angles[0])

def disconnect(self):
"""
Disconnect from the robot.
"""
self.thisptr.disconnect()

the setup.py file:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

setup(
name = 'Demos',
ext_modules=[
Extension("test",
sources=["pyRobot.pyx"],
language="c++"),
],
cmdclass = {'build_ext': build_ext},

)

and then compiling!

run setup.py build_ext -i

With all of this working, a nice test.so file was created, and it was now possible to connect to the robot in Python with

import test
rob = test.pyRobot()
rob.connect()
target_angles = np.array([0, np.pi/2, 0, np.pi/4, 0, 0, 0, 0], dtype='float32')
rob.move(target_angles)
import time
time.sleep(1)
rob.disconnect()

In the above code we’re instantiating the pyRobot class, connecting to the robot, defining a set of target angles and telling the robot to move there, waiting for 1 second to give the robot time to actually move, and then disconnecting from the robot. Upon connection we have to pass in a set of joint angles for the servos, and so you see the robot arm jerk into position, and then move to the target set of joint angles, it looks something exactly like this:

6dof-connect-move

Neat, phase 1 complete.

At the end of phase 1 we are able to connect to the robot arm through Python and send commands in terms of joint angles. But we don’t want to send commands in terms of joint angles, we want to just specify the end-effector position and have the robot work out the angles! I’ve implemented an inverse kinematics solver using constrained optimization before for a 3-link planar arm, but we’re not going to go that route. Find out what we’ll do by joining us next time! or by remembering what I said we’d do at the beginning of this post.

Tagged , , ,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: