## Spiking neural networks take control

Back in September I had an review article in Science Robotics published, discussing new work from Abadia et al, 2021 titled A cerebellar-based solution to the nondeterministic time delay problem in robotic control. In my review I talk about the parallel’s between the brain inspired approach Abadia et al used to create a neural circuit that can effectively control a compliant, highly nonlinear robotic system in the face of variable feedback delay, and the history and application of convolutional neural networks. The basic premise is, to no one’s surprise I’m sure, that there is still much to learn from the brain in building effective artificial neural networks. If you’d like to read the article, you can now check it out here: Spiking neural networks take control.

## Force control of task-space orientation

So you want to use force control to control the orientation of your end-effector, eh? What a noble endeavour. I, too, wished to control the orientation of the end-effector. While the journey was long and arduous, the resulting code is short and quick to implement. All of the code for reproducing the results shown here is up on my GitHub and in the ABR Control repo.

Introduction

There are numerous resources that introduce the topic of orientation control, so I’m not going to do a full rehash here. I will link to resources that I found helpful, but a quick google search will pull up many useful references on the basics.

When describing the orientation of the end-effector there are three different primary methods used: Euler angles, rotation matrices, and quaternions. The Euler angles $\alpha$, $\beta$ and $\gamma$ denote roll, pitch, and yaw, respectively. Rotation matrices specify 3 orthogonal unit vectors, and I describe in detail how to calculate them in this post on forward transforms. And quaternions are 4-dimensional vectors used to describe 3 dimensional orientation, which provide stability and require less memory and compute but are more complicated to understand.

Most modern robotics control is done using quaternions because they do not have singularities, and it is straight forward to convert them to other representations. Fun fact: Quaternion trajectories also interpolate nicely, where Euler angles and rotation matrices do not, so they are used in computer graphics to generate a trajectory for an object to follow in orientation space.

While you won’t need a full understanding of quaternions to use the orientation control code, it definitely helps if anything goes wrong. If you are looking to learn about or brush up on quaternions, or even if you’re not but you haven’t seen this resource, you should definitely check out these interactive videos by Grant Sanderson and Ben Eater. They have done an incredible job developing modules to give people an intuition into how quaternions work, and I can’t recommend their work enough. There’s also a non-interactive video version that covers the same material.

In control literature, angular velocity and acceleration are denoted $\pmb{\omega}$ and $\dot{\pmb{\omega}}$. It’s important to remember that $\omega$ is denoting a velocity, and not a position, as we work through things or it could take you a lot longer to understand than it otherwise might…

How to generate task-space angular forces

So, if you recall a post long ago on Jacobians, our task-space Jacobian has 6 rows:

$\left[ \begin{array}{c} \dot{\textbf{x}} \\ \pmb{\omega} \end{array} \right] = \textbf{J}(\textbf{q}) \; \dot{\textbf{q}}$

In position control, where we’re only concerned about the $(x, y, z)$ position of the hand, the angular velocity dimensions are stripped out of the Jacobian so that it’s a 3 x n_joints matrix rather than a 6 x n_joints matrix. So the orientation of the end-effector is not controlled at all. When we did this, we didn’t need to worry or know anything about the form of the angular velocities.

Now that we’re interested in orientation control, however, we will need to learn up (and thank you to Yitao Ding for clarifying this point in comments on the original version of this post). The Jacobian for the orientation describes the rotational velocities around each axis $(x, y, z)$ with respect to joint velocities. The rotational velocity of each axis “happens” at the same time. It’s important to note that this is not the same thing as Euler angles, which are applied sequentially.

To generate our task-space angular forces we will have to generate an orientation angle error signal of the appropriate form. To do that, first we’re going to have to get and be able to manipulate the orientation representation of the end-effector and our target.

Transforming orientation between representations

We can get the current end-effector orientation in rotation matrix form quickly, using the transformation matrices for the robot. To get the target end-effector orientation in the examples below we’ll use the VREP remote API, which returns Euler angles.

It’s important to note that Euler angles can come in 12 different formats. You have to know what kind of Euler angles you’re dealing with (e.g. rotate around X then Y then Z, or rotate around X then Y then X, etc) for all of this to work properly. It should be well documented somewhere, for example the VREP API page tells us that it will return angles corresponding to x, y, and then z rotations.

The axes of rotation can be static (extrinsic rotations) or rotating (intrinsic rotations). NOTE: The VREP page says that they rotate around an absolute frame of reference, which I take to mean static, but I believe that’s a typo on their page. If you calculate the orientation of the end-effector of the UR5 using transform matrices, and then convert it to Euler angles with axes='rxyz' you get a match with the displayed Euler angles, but not with axes='sxyz'.

Now we’re going to have to be able to transform between Euler angles, rotation matrices, and quaternions. There are well established methods for doing this, and a bunch of people have coded things up to do it efficiently. Here I use the very handy transformations module from Christoph Gohlke at the University of California. Importantly, when converting to quaternions, don’t forget to normalize the quaternions to unit length.

from abr_control.arms import ur5 as arm
from abr_control.interfaces import VREP
from abr_control.utils import transformations

robot_config = arm.Config()
interface = VREP(robot_config)
interface.connect()

feedback = interface.get_feedback()
# get the end-effector orientation matrix
R_e = robot_config.R('EE', q=feedback['q'])
# calculate the end-effector unit quaternion
q_e = transformations.unit_vector(
transformations.quaternion_from_matrix(R_e))

# get the target information from VREP
target = np.hstack([
interface.get_xyz('target'),
interface.get_orientation('target')])
# calculate the target orientation rotation matrix
R_d = transformations.euler_matrix(
target[3], target[4], target[5], axes='rxyz')[:3, :3]
# calculate the target orientation unit quaternion
q_d = transformations.unit_vector(
transformations.quaternion_from_euler(
target[3], target[4], target[5],
axes='rxyz'))  # converting angles from 'rotating xyz'


Generating the orientation error

I implemented 4 different methods for calculating the orientation error, from (Caccavale et al, 1998), (Yuan, 1988) and (Nakinishi et al, 2008), and then one based off some code I found on Stack Overflow. I’ll describe each below, and then we’ll look at the results of applying them in VREP.

Method 1 – Based on code from StackOverflow

Given two orientation quaternion $\textbf{Q}_A$ and $\textbf{Q}_B$, we want to calculate the rotation quaternion $\textbf{R}$ that takes us from $\textbf{Q}_A$ to $\textbf{Q}_B$:

$\textbf{R} \; \textbf{Q}_A = \textbf{Q}_B$

To isolate $\textbf{R}$, we right multiply by the inverse of $\textbf{Q}_A$. All orientation quaternions are of unit length, and for unit quaternions the inverse is the same as the conjugate. To calculate the conjugate of a quaternion, denoted $\bar{\textbf{Q}}$ here, we negate either the scalar or vector part of the quaternion, but not both.

$\textbf{R} \; \textbf{Q}_A \; \bar{\textbf{Q}}_A = \textbf{Q}_B \; \bar{\textbf{Q}}_A$
$\textbf{R} = \textbf{Q}_B \; \bar{\textbf{Q}}_A$

Great! Now we know how to calculate the rotation needed to get from the current orientation to the target orientation. Next, we have to get from $\textbf{R}$ a set of target Euler angle forces. In A new method for performing digital control system attitude computations using quaternions (Ickes, 1968), he mentions mention that

For control purposes, the last three elements of the quaternion define the roll, pitch, and yaw rotational errors…

So you can just take the vector part of the quaternion $\textbf{R}$ and use that as your desired Euler angle forces.

# calculate the rotation between current and target orientations
q_r = transformations.quaternion_multiply(
q_target, transformations.quaternion_conjugate(q_e))

# convert rotation quaternion to Euler angle forces
u_task[3:] = ko * q_r[1:] * np.sign(q_r[0])


NOTE: You will run into issues when the angle $\pi$ is crossed where the arm ‘goes the long way around’. To account for this, use q_r[1:] * np.sign(q_r[0]). This will make sure that you always rotate along a trajectory < 180 degrees towards the target angle. The reason that this crops up is because there are multiple different quaternions that can represent the same orientation.

The following figure shows the arm being directed from and to the same orientations, where the one on the left takes the long way around, and the one on the right multiplies by the sign of the scalar component of the $\textbf{R}$ quaternion as specified above.

Method 2 – Quaternion feedback from Resolved-acceleration control of robot manipulators: A critical review with experiments (Caccavale et al, 1998)

In section IV, equation (34) of this paper they specify the orientation error to be calculated as

$\pmb{\epsilon}_{de} = \textbf{R}_e \pmb{\epsilon}^e_{de}$

where $\textbf{R}_e$ is the rotation matrix for the end-effector, and $\pmb{\epsilon}_{de}^e$ is the vector part of the unit quaternion that can be extracted from the rotation matrix

$\textbf{R}_d^e = \textbf{R}^T_e \textbf{R}_d$.

To implement this is pretty straight forward using the transforms.py module to handle the representation conversions:

# From (Caccavale et al, 1997)
# Section IV - Quaternion feedback
R_ed = np.dot(R_e.T, R_d)  # eq 24
q_ed = transformations.quaternion_from_matrix(R_ed)
q_ed = transformations.unit_vector(q_ed)
u_task[3:] = -np.dot(R_e, q_ed[1:])  # eq 34


Method 3 – Angle/axis feedback from Resolved-acceleration control of robot manipulators: A critical review with experiments (Caccavale et al, 1998)

In section V of the paper, they present an angle / axis feedback algorithm, which overcomes the singularity issues that classic Euler angle methods suffer from. The algorithm defines the orientation error in equation (45) to be calculated

$\textbf{o}_{de} = 2 * \eta_{de}\pmb{\epsilon}_{de}$,

where $\eta_{de}$ and $\pmb{\epsilon}_{de}$ are the scalar and vector part of the quaternion representation of

$\textbf{R}_{de} = \textbf{R}_d \textbf{R}_e^T$

Where $\textbf{R}_d$ is the rotation matrix representing the desired orientation and $\textbf{R}_e$ is the rotation matrix representing the end-effector orientation. The code implementation for this looks like:

# From (Caccavale et al, 1997)
# Section V - Angle/axis feedback
R_de = np.dot(R_d, R_e.T)  # eq 44
q_ed = transformations.quaternion_from_matrix(R_de)
q_ed = transformations.unit_vector(q_ed)
u_task[3:] = -2 * q_ed[0] * q_ed[1:]  # eq 45


From playing around with this briefly, it seems like this method also works. The authors note in the discussion that it may “suffer in the case of large orientation errors”, but I wasn’t able to elicit poor behaviour when playing around with it in VREP. The other downside they mention is that the computational burden is heavier with this method than with quaternion feedback.

Method 4 – From Closed-loop manipulater control using quaternion feedback (Yuan, 1988) and Operational space control: A theoretical and empirical comparison (Nakanishi et al, 2008)

This was the one method that I wasn’t able to get implemented / working properly. Originally presented in (Yuan, 1988), and then modified for representing the angular velocity in world and not local coordinates in (Nakanishi et al, 2008), the equation for generating error (Nakanishi eq 72):

$\textbf{e}_o = \eta_d \pmb{\epsilon} - \eta \pmb{\epsilon}_d + \textbf{S}(\pmb{\epsilon}_d) \pmb{\epsilon}$

where $\eta, \pmb{\epsilon}$ and $\eta_d, \pmb{\epsilon}_d$ are the scalar and vector components of the quaternions representing the end-effector and target orientations, respectively, and $\textbf{S}(\textbf{x})$ is defined in (Nakanishi eq 73):

$\left[ \begin{array}{ccc} 0 & -\textbf{x}[2] & \textbf{x}[1] \\ \textbf{x}[2] & 0 & -\textbf{x}[0] \\ -\textbf{x}[1] & \textbf{x}[0] & 0 \end{array} \right]$

My code for this implementation looks like:

S = np.array([
[0.0, -q_d[2], q_d[1]],
[q_d[2], 0.0, -q_d[0]],
[-q_d[1], q_d[0], 0.0]])

u_task[3:] = -(q_d[0] * q_e[1:] - q_e[0] * q_d[1:] +
np.dot(S, q_e[1:]))


If you understand why this isn’t working, if you can provide a working code example in the comments I would be very grateful.

Generating the full orientation control signal

The above steps generate the task-space control signal, and from here I’m just using standard operational space control methods to take u_task and transform it into joint torques to send out to the arm. With possibly the caveat that I’m accounting for velocity in joint-space, not task space. Generating the full control signal looks like:


# which dim to control of [x, y, z, alpha, beta, gamma]
ctrlr_dof = np.array([False, False, False, True, True, True])

feedback = interface.get_feedback()
# get the end-effector orientation matrix
R_e = robot_config.R('EE', q=feedback['q'])
# calculate the end-effector unit quaternion
q_e = transformations.unit_vector(
transformations.quaternion_from_matrix(R_e))

# get the target information from VREP
target = np.hstack([
interface.get_xyz('target'),
interface.get_orientation('target')])
# calculate the target orientation rotation matrix
R_d = transformations.euler_matrix(
target[3], target[4], target[5], axes='rxyz')[:3, :3]
# calculate the target orientation unit quaternion
q_d = transformations.unit_vector(
transformations.quaternion_from_euler(
target[3], target[4], target[5],
axes='rxyz'))  # converting angles from 'rotating xyz'

# calculate the Jacobian for the end effectora
# and isolate relevate dimensions
J = robot_config.J('EE', q=feedback['q'])[ctrlr_dof]

# calculate the inertia matrix in task space
M = robot_config.M(q=feedback['q'])

# calculate the inertia matrix in task space
M_inv = np.linalg.inv(M)
Mx_inv = np.dot(J, np.dot(M_inv, J.T))
if np.linalg.det(Mx_inv) != 0:
# do the linalg inverse if matrix is non-singular
# because it's faster and more accurate
Mx = np.linalg.inv(Mx_inv)
else:
# using the rcond to set singular values < thresh to 0
# singular values < (rcond * max(singular_values)) set to 0
Mx = np.linalg.pinv(Mx_inv, rcond=.005)

u_task = np.zeros(6)  # [x, y, z, alpha, beta, gamma]

# generate orientation error
# CODE FROM ONE OF ABOVE METHODS HERE

# remove uncontrolled dimensions from u_task

# transform from operational space to torques and
# add in velocity and gravity compensation in joint space
u = (np.dot(J.T, np.dot(Mx, u_task)) -
kv * np.dot(M, feedback['dq']) -
robot_config.g(q=feedback['q']))

# apply the control signal, step the sim forward
interface.send_forces(u)


The control script in full context is available up on my GitHub along with the corresponding VREP scene. If you download and run both (and have the ABR Control repo installed), then you can generate fun videos like the following:

Here, the green ball is the target, and the end-effector is being controlled to match the orientation of the ball. The blue box is just a visualization aid for displaying the orientation of the end-effector. And that hand is on there just from another project I was working on then forgot to remove but already made the videos so here we are. It’s set to not affect the dynamics so don’t worry. The target changes orientation once a second. The orientation gain for these trials is ko=200 and kv=np.sqrt(600).

The first three methods all perform relatively similarly to each other, although method 3 seems to be a bit faster to converge to the target orientation after the first movement. But it’s pretty clear something is terribly wrong with the implementation of the Yuan algorithm in method 4; brownie points for whoever figures out what!

Controlling position and orientation

So you want to use force control to control both position and orientation, eh? You are truly reaching for the stars, and I applaud you. For the most part, this is pretty straight-forward. But there are a couple of gotchyas so I’ll explicitly go through the process here.

How many degrees-of-freedom (DOF) can be controlled?

If you recall from my article on Jacobians, there was a section on analysing the Jacobian. It comes down to two main points: 1) The Jacobian specifies which task-space DOF can be controlled. If there is a row of zeros, for example, the corresponding task-space DOF (i.e. $(x, y, z, \alpha, \beta, \gamma)$ cannot be controlled. 2) The rank of the Jacobian determines how many DOF can be controlled at the same time.

For example, in a two joint planar arm, the $(x, y, \gamma)$ variables can be controlled, but $(z, \alpha, \beta)$ cannot be controlled because their corresponding rows are all zeros. So 3 variables can potentially be controlled, but because the Jacobian is rank 2 only two variables can be controlled at a time. If you try to control more than 2 DOF at a time things are going to go poorly. Here are some animations of trying to control 3 DOF vs 2 DOF in a 2 joint arm:

How to specify which DOF are being controlled?

Okay, so we don’t want to try to control too many DOF at once. Got it. Let’s say we know that our arm has 3 DOF, how do we choose which DOF to control? Simple: You remove the rows from you Jacobian and your control signal that correspond to task-space DOF you don’t want to control.

To implement this in code in a flexible way, I’ve chosen to specify an array with 6 boolean elements, set to True if you want to control the corresponding task space parameter and False if you don’t. For example, if you to control just the $(x, y, z)$ parameters, you would set ctrl_dof = [True, True, True, False, False, False].

We then strip the Jacobian and task space control signal down to the relevant rows with J = robot_config.('EE', q)[ctrlr_dof] and u_task = (current - target)[ctrlr_dof]. This means that both current and target must be 6-dimensional vectors specifying the current and target $(x, y, z, \alpha, \beta, \gamma)$ values, respectively, regardless of how many dimensions we’re actually controlling.

Generating a position + orientation control signal

The UR5 has 6 degrees of freedom, so we’re able to fully control the task space position and orientation. To do this, in the above script just ctrl_dof = np.array([True, True, True, True, True, True]), and there you go! In the following animations the gain values used were kp=300, ko=300, and kv=np.sqrt(kp+ko)*1.5. The full script can be found up on my GitHub.

NOTE: Setting the gains properly for this task is pretty critical, and I did it just by trial and error until I got something that was decent for each. For a real comparison, better parameter tuning would have to be undertaken more rigorously.

NOTE: When implementing this minimal code example script I ran into a problem that was caused by the task-space inertia matrix calculation. It turns out that using np.linalg.pinv gives very different results than np.linalg.inv, and I did not realise this. I’m going to have to explore this more fully later, but basically heads up that you want to be using np.linalg.inv as much as possible. So you’ll notice in the above code I check the dimensionality of Mx_inv and first try to use np.linalg.inv before resorting to np.linalg.pinv.

NOTE: If you start playing around with controlling only one or two of the orientation angles, something to keep in mind: Because we’re using rotating axes, if you set up False, False, True then it’s not going to look like $\gamma$ of the end-effector is lining up with the $\gamma$ of the target. This is because $\alpha$ and $\beta$ weren’t set first. If you generate a plot of the target orientations vs the end-effector orientations, however, you’ll see that you are in face reaching the target orientation for $\gamma$.

In summary

So that’s that! Lots of caveats, notes, and more work to be done, but hopefully this will be a useful resource for any others embarking on the same journey. You can download the code, try it out, and play around with the gains and targets. Let me know below if you have any questions or enjoyed the post, or want to share any other resources on force control of task-space orientation.

## Building a spiking neural model of adaptive arm control

About a year ago I published the work from my thesis in a paper called ‘A spiking neural model of adaptive arm control’. In this paper I presented the Recurrent Error-driven Adaptive Control Hierarchy (REACH) model. The goal of the model is to begin working towards reproducing behavioural level phenomena of human movement with biologically plausible spiking neural networks.

To do this, I start by using three methods from control literature (operational space control, dynamic movement primitives, and non-linear adaptive control) to create an algorithms level model of the motor control system that captures behavioural level phenomena of human movement. Then I explore how this functionality could be mapped to the primate brain and implemented in spiking neurons. Finally, I look at the data generated by this model on the behavioural level (e.g. kinematics of movement), the systems level (i.e. analysis of populations of neurons), and the single-cell level (e.g. correlating neural activity with movement parameters) and compare/contrast with experimental data.

By having a full model framework (from observable behaviour to neural spikes) is to have a more constrained computational model of the motor control system; adding lower-level biological constraints to behavioural models and higher-level behavioural constraints to neural models.

In general, once you have a model, the critical next step is to generating testable predictions that can be used to discriminate between other models with different implementations or underlying algorithms. Discriminative predictions allow us to design experiments that can gather evidence in favour or against different hypotheses of brain function, and provide clues to useful directions for further research. Which is the real contribution of computational modeling.

So that’s a quick overview of the paper; there are quite a few pages of supplementary information that describe the details of the model implementation, and I provided the code and data used to generate the data analysis figures. However, code to explicitly run the model on your own has been missing. As one of the major points of this blog is to provide code for furthering research, this is pretty embarrassing. So, to begin to remedy this, in this post I’m going to work through a REACH framework for building models to control a two-link arm through reaching in a line, tracing a circle, performing the centre-out reaching task, and adapting online to unexpected perturbations during reaching imposed by a joint-velocity based forcefield.

This post is directed towards those who have already read the paper (although not necessarily the supplementary material). To run the scripts you’ll need Nengo, Nengo GUI, and NengoLib all installed. There’s a description of the theory behind the Neural Engineering Framework, which I use extensively in my Nengo modeling, in the paper. I’m hoping that between that and code readability / my explanations below that most will be comfortable starting to play around with the code. But if you’re not, and would like more resources, you can check out the Getting Started page on the Nengo website, the tutorials from How To Build a Brain, and the examples in the Nengo GUI.

You can find all of the code up on my GitHub.

NOTE: I’m using the two-link arm (which is fully implemented in Python) instead of the three-link arm (which has compile issues for Macs) both so that everyone should be able to run the model arm code and to reduce the number of neurons that are required for control, so that hopefully you can run this on you laptop in the event that you don’t have a super power Ubuntu work station. Scaling this model up to the three-link arm is straight-forward though, and I will work on getting code up (for the three-link arm for non-Mac users) as a next project.

Implementing PMC – the trajectory generation system

I’ve talked at length about dynamic movement primitives (DMPs) in previous posts, so I won’t describe those again here. Instead I will focus on their implementation in neurons.

def generate(y_des, speed=1, alpha=1000.0):
beta = alpha / 4.0

# generate the forcing function
forces, _, goals = forcing_functions.generate(
y_des=y_des, rhythmic=False, alpha=alpha, beta=beta)

# create alpha synapse, which has point attractor dynamics
tau = np.sqrt(1.0 / (alpha*beta))
alpha_synapse = nengolib.Alpha(tau)

net = nengo.Network('PMC')
with net:
net.output = nengo.Node(size_in=2)

# create a start / stop movement signal
time_func = lambda t: min(max(
(t * speed) % 4.5 - 2.5, -1), 1)

def goal_func(t):
t = time_func(t)
if t <= -1:
return goals[0]
return goals[1]
net.goal = nengo.Node(output=goal_func, label='goal')

# -------------------- Ramp ---------------------------
ramp_node = nengo.Node(output=time_func, label='ramp')
net.ramp = nengo.Ensemble(
n_neurons=500, dimensions=1, label='ramp ens')
nengo.Connection(ramp_node, net.ramp)

# ------------------- Forcing Functions ---------------
def relay_func(t, x):
t = time_func(t)
if t <= -1:
return [0, 0]
return x
# the relay prevents forces from being sent on reset
relay = nengo.Node(output=relay_func, size_in=2)

domain = np.linspace(-1, 1, len(forces[0]))
x_func = interpolate.interp1d(domain, forces[0])
y_func = interpolate.interp1d(domain, forces[1])
transform=1.0/alpha/beta
nengo.Connection(net.ramp, relay[0], transform=transform,
function=x_func, synapse=alpha_synapse)
nengo.Connection(net.ramp, relay[1], transform=transform,
function=y_func, synapse=alpha_synapse)
nengo.Connection(relay, net.output)

nengo.Connection(net.goal[0], net.output[0],
synapse=alpha_synapse)
nengo.Connection(net.goal[1], net.output[1],
synapse=alpha_synapse)
return net


The generate method for the PMC takes in a desired trajectory, y_des, as a parameter. The first thing we do (on lines 5-6) is calculate the forcing function that will push the DMP point attractor along the desired trajectory.

The next thing (on lines 9-10) is creating an Alpha (second-order low-pass filter) synapse. By writing out the dynamics of a point attractor in Laplace space, one of the lab members, Aaron Voelker, noticed that the dynamics could be fully implemented by creating an Alpha synapse with an appropriate choice of tau. I walk through all of the math behind this in this post. Here we’ll use that more compact method and project directly to the output node, which improves performance and reduces the number of neurons.

Inside the PMC network we create a time_func node, which is the pace-setter during simulation. It will output a linear ramp from -1 to 1 every few seconds, with the pace set by the speed parameter, and then pause before restarting.

We also have a goal node, which will provide a target starting and ending point for the trajectory. Both the time_func and goal nodes are created and used as a model simulation convenience, and proposed to be generated elsewhere in the brain (the basal ganglia, why not? #igotreasons #provemewrong).

The ramp ensemble is the most important component of the trajectory generation system. It takes the output from the time_func node as input, and generates the forcing function which will guide our little system through the trajectory that was passed in. The ensemble itself is nothing special, but rather the function that it approximates on its outgoing connection. We set up this function approximation with the following code:

        domain = np.linspace(-1, 1, len(forces[0]))
x_func = interpolate.interp1d(domain, forces[0])
y_func = interpolate.interp1d(domain, forces[1])
transform=1.0/alpha/beta
nengo.Connection(net.ramp, relay[0], transform=transform,
function=x_func, synapse=alpha_synapse)
nengo.Connection(net.ramp, relay[1], transform=transform,
function=y_func, synapse=alpha_synapse)
nengo.Connection(relay, net.output)


We want the forcing function be generated as the signals represented in the ramp ensemble moves from -1 to 1. To achieve this, we create interpolation functions, x_func and y_func, which are set up to generate the forcing function values mapped to input values between -1 and 1. We pass these functions into the outgoing connections from the ramp population (one for x and one for y). So now when the ramp ensemble is representing -1, 0, and 1 the output along the two connections will be the starting, middle, and ending x and y points of the forcing function trajectory. The transform and synapse are set on each connection with the appropriate gain values and Alpha synapse, respectively, to implement point attractor dynamics.

NOTE: The above DMP implementation can generate a trajectory signal with as many dimensions as you would like, and all that’s required is adding another outgoing Connection projecting from the ramp ensemble.

The last thing in the code is hooking up the goal node to the output, which completes the point attractor implementation.

Implementing M1 – the kinematics of operational space control

In REACH, we’ve modelled the primary motor cortex (M1) as responsible for taking in a desired hand movement (i.e. target_position - current_hand_position) and calculating a set of joint torques to carry that out. Explicitly, M1 generates the kinematics component of an OSC signal:

$\textbf{u}_\textrm{M1} = \textbf{J}^T \textbf{M}_\textbf{x} (k_p (\textbf{x}^* - \textbf{x}))$

In the paper I did this using several populations of neurons, one to calculate the Jacobian, and then an EnsembleArray to perform the multiplication for the dot product of each dimension separately. Since then I’ve had the chance to rework things and it’s now done entirely in one ensemble.

Now, the set up for the M1 model that computes the above function is to have a single ensemble of neurons that takes in the joint angles, $\textbf{q}$, and control signal $\textbf{u}_\textbf{x} = k_p (\textbf{x}^* - \textbf{x})$, and outputs the function above. Sounds pretty simple, right? Simple is good.

Let’s look at the code (where I’ve stripped out the comments and some debugging code):

def generate(arm, kp=1, operational_space=True,
inertia_compensation=True, means=None, scales=None):

dim = arm.DOF + 2

means = np.zeros(dim) if means is None else means
scales = np.ones(dim) if scales is None else scales
scale_down, scale_up = generate_scaling_functions(
np.asarray(means), np.asarray(scales))

net = nengo.Network('M1')
with net:
# create / connect up M1 ------------------------------
net.M1 = nengo.Ensemble(
n_neurons=1000, dimensions=dim,
intercepts=AreaIntercepts(
dimensions=dim,
base=nengo.dists.Uniform(-1, .1)))

# expecting input in form [q, x_des]
net.input = nengo.Node(output=scale_down, size_in=dim)
net.output = nengo.Node(size_in=arm.DOF)

def M1_func(x, operational_space, inertia_compensation):
""" calculate the kinematics of the OSC signal """
x = scale_up(x)
q = x[:arm.DOF]
x_des = kp * x[arm.DOF:]

# calculate hand (dx, dy)
if operational_space:
J = arm.J(q=q)

if inertia_compensation:
# account for inertia
Mx = arm.Mx(q=q)
x_des = np.dot(Mx, x_des)
# transform to joint torques
u = np.dot(J.T, x_des)
else:
u = x_des

if inertia_compensation:
# account for mass
M = arm.M(q=q)
u = np.dot(M, x_des)

return u

# send in system feedback and target information
# don't account for synapses twice
nengo.Connection(net.input, net.M1, synapse=None)
nengo.Connection(
net.M1, net.output,
function=lambda x: M1_func(
x, operational_space, inertia_compensation),
synapse=None)

return net


The ensemble of neurons itself is created with a few interesting parameters:

        net.M1 = nengo.Ensemble(
n_neurons=1000, dimensions=dim,
intercepts=AreaIntercepts(
dimensions=dim, base=nengo.dists.Uniform(-1, .1)))


Specifically, the radius and intercepts parameters.

Setting the intercepts

First we’ll discuss setting the intercepts using the AreaIntercepts distribution. The intercepts of a neuron determine how much of state space a neuron is active in, which we’ll refer to as the ‘active proportion’. If you don’t know what kind of functions you want to approximate with your neurons, then you having the active proportions for your ensemble chosen from a uniform distribution is a good starting point. This means that you’ll have roughly the same number of neurons active across all of state space as you do neurons that are active over half of state space as you do neurons that are active over very small portions of state space.

By default, Nengo sets the intercepts such that the distribution of active proportions is uniform for lower dimensional spaces. But when you start moving into higher dimensional spaces (into a hypersphere) the default method breaks down and you get mostly neurons that are either active for all of state space or almost none of state space. The AreaIntercepts class calculates how the intercepts should be set to achieve the desire active proportion inside a hypersphere. There are a lot more details here that you can read up on in this IPython notebook by Dr. Terrence C. Stewart.

What you need to know right now is that we’re setting the intercepts of the neurons such that the percentage of state space for which any given neuron is active is chosen from a uniform distribution between 0% and 55%. In other words, a neuron will maximally be active in 55% of state space, no more. This will let us model more nonlinear functions (such as the kinematics of the OSC signal) with fewer neurons. If this description is clear as mud, I really recommend checking out the IPython notebook linked above to get an intuition for what I’m talking about.

Scaling the input signal

The other parameter we set on the M1 ensemble is the radius. The radius scales the range of input values that the ensemble can represent, which is by default anything inside the unit hypersphere (i.e. hypersphere with radius=1). If the radius is left at this default value, the neural activity will saturate for vectors with magnitude greater than 1, leading to inaccurate vector representation and function approximation for input vectors with magnitude > 1. For lower dimensions this isn’t a terrible problem, but as the dimensions of the state space you’re representing grow it becomes more common for input vectors to have a norm greater than 1. Typically, we’d like to be able to, at a minimum, represent vectors with any number of dimensions where any element can be anywhere between -1 and 1. To do this, all we have to do is calculate the norm of the unit vector size dim, which is np.sqrt(dim) (the magnitude of a vector size dim with all elements set to one).

Now that we’re able to represent vectors where the input values are all between -1 and 1, the last part of this sub-network is scaling the input to be between -1 and 1. We use two scaling functions, scale_down and scale_up. The scale_down function subtracts a mean value and scales the input signal to be between -1 and 1. The scale_up function reverts the vector back to it’s original values so that calculations can be carried out normally on the decoding. In choosing mean and scaling values, there are two ways we can set these functions up:

1. Set them generally, based on the upper and lower bounds of the input signal. For M1, the input is $[\textbf{q}, \textbf{u}_\textbf{x}]$ where $\textbf{u}_\textbf{x}$ is the control signal in end-effector space, we know that the joint angles are always in the range 0 to $\pi$ (because that’s how the arm simulation is programmed), so we can set the means and scales to be $\frac{\pi}{2}$ for $\textbf{q}$. For $\textbf{u}$ a mean of zero is reasonable, and we can choose (arbitrarily, empirically, or analytically) the largest task space control signal we want to represent accurately.
2. Or, if we know the model will be performing a specific task, we can look at the range of input values encountered during that task and set the means and scales terms appropriately. For the task of reaching in a straight line, the arm moves in a very limited state space and we can set the mean and we can tune these parameter to be very specific:
                             means=[0.6, 2.2, 0, 0],
scales=[.25, .25, .25, .25]


The benefit of the second method, although one can argue it’s parameter tuning and makes things less biologically plausible, is that it lets us run simulations with fewer neurons. The first method works for all of state space, given enough neurons, but seeing as we don’t always want to be simulating 100k+ neurons we’re using the second method here. By tuning the scaling functions more specifically we’re able to run our model using 1k neurons (and could probably get away with fewer). It’s important to keep in mind though that if the arm moves outside the expected range the control will become unstable.

Implementing CB – the dynamics of operational space control

The cerebellum (CB) sub-network has two components to it: dynamics compensation and dynamics adaptation. First we’ll discuss the dynamics compensation. By which I mean the $k_v \textbf{M} (\textbf{q}^* - \textbf{q})$ term from the OSC signal.

Much like the calculating the kinematics term of the OSC signal in M1, we can calculate the entire dynamics compensation term using a single ensemble with an appropriate radius, scaled inputs, and well chosen intercepts.

def generate(arm, kv=1, learning_rate=None, learned_weights=None,
means=None, scales=None):
dim = arm.DOF * 2

means = np.zeros(dim) if means is None else means
scales = np.ones(dim) if scales is None else scales
scale_down, scale_up = generate_scaling_functions(
np.asarray(means), np.asarray(scales))

net = nengo.Network('CB')
with net:
# create / connect up CB --------------------------------
net.CB = nengo.Ensemble(
n_neurons=1000, dimensions=dim,
intercepts=AreaIntercepts(
dimensions=dim,
base=nengo.dists.Uniform(-1, .1)))
# expecting input in form [q, dq, u]
net.input = nengo.Node(output=scale_down,
size_in=dim+arm.DOF+2)
cb_input = nengo.Node(size_in=dim, label='CB input')
nengo.Connection(net.input[:dim], cb_input)
net.output = nengo.Node(size_in=arm.DOF*2)

def CB_func(x):
""" calculate the dynamic component of OSC signal """
x = scale_up(x)
q = x[:arm.DOF]
dq = x[arm.DOF:arm.DOF*2]

# calculate inertia matrix
M = arm.M(q=q)
return -np.dot(M, kv * dq)
# connect up the input and output
nengo.Connection(net.input[:dim], net.CB)
nengo.Connection(net.CB, net.output[:arm.DOF],
function=CB_func, synapse=None)


I don’t think there’s anything noteworthy going on here, most of the relevant details have already been discussed…so we’ll move on to the adaptation!

Implementing CB – non-linear dynamics adaptation

The final part of the model is the non-linear dynamics adaptation, modelled as a separate ensemble in the cerebellar sub-network (a separate ensemble so that it’s more modular, the learning connection could also come off of the other CB population). I work through the details and proof of the learning rule in the paper, so I’m not going to discuss that here. But I will restate the learning rule here:

$\dot{\textbf{d}} = \textbf{L}_d \textbf{A} \otimes \textbf{u},$

where $\textbf{d}$ are the neural decoders, $\textbf{L}_d$ is the learning rate, $\textbf{A}$ is the neural activity of the ensemble, and $\textbf{u}$ is the joint space control signal sent to the arm. This is a basic delta learning rule, where the decoders of the active neurons are modified to push the decoded function in a direction that reduces the error.

The adaptive ensemble can be initialized either using saved weights (passed in with the learned_weights paramater) or as all zeros. It is important to note that setting decoders to all zeros means that does not mean having zero neural activity, so learning will not be affected by this initialization.

        # dynamics adaptation------------------------------------
if learning_rate is not None:
n_neurons=1000, dimensions=arm.DOF*2,
# enforce spiking neurons
neuron_type=nengo.LIF(),
intercepts=AreaIntercepts(
dimensions=arm.DOF,
base=nengo.dists.Uniform(-.5, .2)))

net.learn_encoders = nengo.Connection(

# if no saved weights were passed in start from zero
weights = (
learned_weights if learned_weights is not None
net.learn_conn = nengo.Connection(
# connect directly to arm so that adaptive signal
# is not included in the training signal
transform=weights,
learning_rule_type=nengo.PES(
learning_rate=learning_rate),
synapse=None)

nengo.Connection(net.input[dim:dim+2],
net.learn_conn.learning_rule,
transform=-1, synapse=.01)
return net


We’re able to implement that learning rule using Nengo’s prescribed error-sensitivity (PES) learning on our connection from the adaptive ensemble to the output. With this set up the system will be able to learn to adapt to perturbations that are functions of the input (set here to be $[\textbf{q}, \dot{\textbf{q}}]$).

The intercepts in this population are set to values I found worked well for adapting to a few different forces, but it’s definitely a parameter to play with in your own scripts if you’re finding that there’s too much or not enough generalization of the decoded function output across the state space.

One other thing to mention is that we need to have a relay node to amalgamate the control signals output from M1 and the dynamics compensation ensemble in the CB. This signal is used to train the adaptive ensemble, and it’s important that the adaptive ensemble’s output is not included in the training signal, or else the system quickly goes off to positive or negative infinity.

Implementing S1 – a placeholder

The last sub-network in the REACH model is a placeholder for a primary sensory cortex (S1) model. This is just a set of ensembles that represents the feedback from the arm and relay it on to the rest of the model.

def generate(arm, direct_mode=False, means=None, scales=None):
dim = arm.DOF*2 + 2  # represents [q, dq, hand_xy]

means = np.zeros(dim) if means is None else means
scales = np.ones(dim) if scales is None else scales
scale_down, scale_up = generate_scaling_functions(
np.asarray(means), np.asarray(scales))

net = nengo.Network('S1')
with net:
# create / connect up S1 --------------------------------
net.S1 = nengo.networks.EnsembleArray(
n_neurons=50, n_ensembles=dim)

# expecting input in form [q, x_des]
net.input = nengo.Node(output=scale_down, size_in=dim)
net.output = nengo.Node(
lambda t, x: scale_up(x), size_in=dim)

# send in system feedback and target information
# don't account for synapses twice
nengo.Connection(net.input, net.S1.input, synapse=None)
nengo.Connection(net.S1.output, net.output, synapse=None)

return net


Since there’s no function that we’re decoding off of the represented variables we can use separate ensembles to represent each dimension with an EnsembleArray. If we were going to decode some function of, for example, q0 and dq0, then we would need an ensemble that represents both variables. But since we’re just decoding out f(x) = x, using an EnsembleArray is a convenient way to decrease the number of neurons needed to accurately represent the input.

Creating a model using the framework

The REACH model has been set up to be as much of a plug and play system as possible. To generate a model you first create the M1, PMC, CB, and S1 networks, and then they’re all hooked up to each other using the framework.py file. Here’s an example script that controls the arm to trace a circle:

def generate():
kp = 200
kv = np.sqrt(kp) * 1.5

center = np.array([0, 1.25])
# set the initial position of the arm
arm_sim.init_q = arm_sim.inv_kinematics(center)
arm_sim.reset()

net = nengo.Network(seed=0)
with net:
net.dim = arm_sim.DOF
net.arm_node = arm_sim.create_nengo_node()
net.error = nengo.Ensemble(1000, 2)
net.xy = nengo.Node(size_in=2)

# create an M1 model -------------------------------------
net.M1 = M1.generate(arm_sim, kp=kp,
operational_space=True,
inertia_compensation=True,
means=[0.6, 2.2, 0, 0],
scales=[.5, .5, .25, .25])

# create an S1 model -------------------------------------
net.S1 = S1.generate(arm_sim,
means=[.6, 2.2, -.5, 0, 0, 1.25],
scales=[.5, .5, 1.7, 1.5, .75, .75])

# subtract current position to get task space direction
nengo.Connection(net.S1.output[net.dim*2:], net.error,
transform=-1)

# create a trajectory for the hand to follow -------------
x = np.linspace(0.0, 2.0*np.pi, 100)
PMC_trajectory = np.vstack([np.cos(x) * .5,
np.sin(x) * .5])
PMC_trajectory += center[:, None]
# create / connect up PMC --------------------------------
net.PMC = PMC.generate(PMC_trajectory, speed=1)
# send target for calculating control signal
nengo.Connection(net.PMC.output, net.error)
# send target (x,y) for plotting
nengo.Connection(net.PMC.output, net.xy)

net.CB = CB.generate(arm_sim, kv=kv,
means=[0.6, 2.2, -.5, 0],
scales=[.5, .5, 1.6, 1.5])

model = framework.generate(net=net, probes_on=True)
return model


In line 50 you can see the call to the framework code, which will hook up the most common connections that don’t vary between the different scripts.

The REACH model has assigned functionality to each area / sub-network, and you can see the expected input / output in the comments at the top of each sub-network file, but the implementations are open. You can create your own M1, PMC, CB, or S1 sub-networks and try them out in the context of a full model that generates high-level movement behaviour.

Running the model

To run the model you’ll need Nengo, Nengo GUI, and NengoLib all installed. You can then pull open Nengo GUI and load any of the a# scripts. In all of these scripts the S1 model is just an ensemble that represents the output from the arm_node. Here’s what each of the scripts does:

1. a01 has a spiking M1 and CB, dynamics adaptation turned off. The model guides the arm in reaching in a straight line to a single target and back.
2. a02 has a spiking M1, PMC, and CB, dynamics adaptation turned off. The PMC generates a path for the hand to follow that traces out a circle.
3. a03 has a spiking M1, PMC, and CB, dynamics adaptation turned off. The PMC generates a path for the joints to follow, which moves the hand in a straight line to a target and back.
4. a04 has a spiking M1 and CB, dynamics adaptation turned off. The model performs the centre-out reaching task, starting at a central point and reaching to 8 points around a circle.
5. a05 has a spiking M1 and CB, and dynamics adaptation turned on. The model performs the centre-out reaching task, starting at a central point and reaching to 8 points around a circle. As the model reaches, a forcefield is applied based on the joint velocities that pushes the arm as it tries to reach the target. After 100-150 seconds of simulation the arm has adapted and learned to reach in a straight line again.

Here’s what it looks like when you pull open a02 in Nengo GUI:

I’m not going to win any awards for arm animation, but! It’s still a useful visualization, and if anyone is proficient in javascript and want’s to improve it, please do! You can see the network architecture in the top left, the spikes generated by M1 and CB to the right of that, the arm in the bottom left, and the path traced out by the hand just to the right of that. On the top right you can see the a02 script code, and below that the Nengo console.

Conclusions

One of the most immediate extensions (aside from any sort of model of S1) that comes to mind here is implementing a more detailed cerebellar model, as there are several anatomically detailed models which have the same supervised learner functionality (for example (Yamazaki and Nagao, 2012)).

Hopefully people find this post and the code useful for their own work, or at least interesting! In the ideal scenario this would be a community project, where researchers add models of different brain areas and we end up with a large library of implementations to build larger models with in a Mr. Potato Head kind of fashion.

You can find all of the code up on my GitHub. And again, this code all should have been publicly available along with the publication. Hopefully the code proves useful! If you have any questions about it please don’t hesitate to make a comment here or contact me through email, and I’ll get back to you as soon as I can.

## ABR Control repo public release!

https://github.com/abr/abr_control

Last August I started working on a new version of my old control repo with a resolve to make something less hacky, as part of the work for Applied Brain Research, Inc, a startup that I co-founded with others from my lab after most of my cohort graduated. Together with Pawel Jaworski, who comprises other half of ABR’s motor team, we’ve been building up a library of useful functions for modeling, simulating, interfacing, and controlling robot arms.

Today we’re making the repository public, under the same free for non-commercial use that we’ve released our Nengo neural modelling software on. You can find it here: ABR_Control

It’s all Python 3, and here’s an overview of some of the features:

• Automates generation of functions for computing the Jacobians, joint space and task space inertia matrices, centrifugal and Coriolis effects, and Jacobian derivative, provided each link’s inertia matrix and the transformation matrices
• Option to compile these functions to speedy Cython implementations
• Operational space, joint space, floating, and sliding controllers provided with PyGame and VREP example scripts
• Interfaces with VREP
• Configuration files for one, two, and three link arms, as well as the UR5 and Jaco2 arms in VREP
• Provides Python simulations of two and three link arms, with PyGame visualization
• Path planning using first and second order filtering of the target and example scripts.

Structure

The ABR Control library is divided into three sections:

1. Arm descriptions (and simulations)
2. Robotic system interfaces
3. Controllers

The big goal was to make all of these interchangeable, so that to run any permutation of them you just have to change which arm / interface / controller you’re importing.

To support a new arm, the user only needs to create a configuration file specifying the transforms and inertia matrices. Code for calculating the necessary functions of the arm will be symbolically derived using SymPy, and compiled to C using Cython for efficient run-time execution.

Interfaces provide send_forces and send_target_angles functions, to apply torques and put the arm in a target state, as well as a get_feedback function, which returns a dictionary of information about the current state of the arm (joint angles and velocities at a minimum).

Controllers provide a generate function, which take in current system state information and a target, and return a set of joint torques to apply to the robot arm.

VREP example

The easiest way to show it is with some code examples. So, once you’ve cloned and installed the repo, you can open up VREP and the jaco2.ttt model in the abr_control/arms/jaco2 folder, and to control it using an operational space controller you would run the following:

import numpy as np
from abr_control.arms import jaco2 as arm
from abr_control.controllers import OSC
from abr_control.interfaces import VREP

# initialize our robot config for the ur5
robot_config = arm.Config(use_cython=True, hand_attached=True)

# instantiate controller
ctrlr = OSC(robot_config, kp=200, vmax=0.5)

# create our VREP interface
interface = VREP(robot_config, dt=.001)
interface.connect()

target_xyz = np.array([0.2, 0.2, 0.2])
# set the target object's position in VREP
interface.set_xyz(name='target', xyz=target_xyz)

count = 0.0
while count < 1500:  # run for 1.5 simulated seconds
# get joint angle and velocity feedback
feedback = interface.get_feedback()
# calculate the control signal
u = ctrlr.generate(
q=feedback['q'],
dq=feedback['dq'],
target_pos=target_xyz)
# send forces into VREP, step the sim forward
interface.send_forces(u)

count += 1
interface.disconnect()


This is a minimal example of the examples/VREP/reaching.py code. To run it with a different arm, you can just change the from abr_control.arms import as line. The repo comes with the configuration files for the UR5 and a onelink VREP arm model as well.

PyGame example

I’ve also found the PyGame simulations of the 2 and 3 link arms very helpful for quickly testing new controllers and code, as an easy low overhead proof of concept sandbox. To run the threelink arm (which runs in Linux and Windows fine but I’ve heard has issues in Mac OS), with the operational space controller, you can run this script:

import numpy as np
from abr_control.arms import threelink as arm
from abr_control.interfaces import PyGame
from abr_control.controllers import OSC

# initialize our robot config
robot_config = arm.Config(use_cython=True)
# create our arm simulation
arm_sim = arm.ArmSim(robot_config)

# create an operational space controller
ctrlr = OSC(robot_config, kp=300, vmax=100,
use_dJ=False, use_C=True)

def on_click(self, mouse_x, mouse_y):
self.target[0] = self.mouse_x
self.target[1] = self.mouse_y

# create our interface
interface = PyGame(robot_config, arm_sim, dt=.001,
on_click=on_click)
interface.connect()

# create a target
feedback = interface.get_feedback()
target_xyz = robot_config.Tx('EE', feedback['q'])
interface.set_target(target_xyz)

try:
while 1:
# get arm feedback
feedback = interface.get_feedback()
hand_xyz = robot_config.Tx('EE', feedback['q'])

# generate an operational space control signal
u = ctrlr.generate(
q=feedback['q'],
dq=feedback['dq'],
target_pos=target_xyz)

new_target = interface.get_mousexy()
if new_target is not None:
target_xyz[0:2] = new_target
interface.set_target(target_xyz)

# apply the control signal, step the sim forward
interface.send_forces(u)

finally:
# stop and reset the simulation
interface.disconnect()


The extra bits of code just set up a hook so that when you click on the PyGame display somewhere the target moves to that point.

So! Hopefully some people find this useful for their research! It should be as easy to set up as cloning the repo, installing the requirements and running the setup file, and then trying out the examples.

If you find a bug please file an issue! If you find a way to improve it please do so and make a PR! And if you’d like to use anything in the repo commercially, please contact me.

Tagged , , , , ,

## Full body obstacle collision avoidance

Previously I’ve discussed how to avoid obstacles using DMPs in the end-effector trajectory. This is good when you’re controlling a single disconnected point-mass, like a mobile robot navigating around an environment. But if you want to use this system to control a robotic manipulator, then pretty quickly you run into the problem that your end-effector is not a disconnected point-mass moving around the environment. It’s attached to the rest of the arm, and moving such that the arm segments and joints also avoid the obstacle is a whole other deal.

I was doing a quick lit scan on methods for control methods for avoiding joint collision with obstacles, and was kind of surprised that there wasn’t really much in the realm of recent discussions about it. There is, however, a 1986 paper from Dr. Oussama Khatib titled Real-time obstacle avoidance for manipulators and mobile robots that pretty much solves this problem short of getting into explicit path planning methods. Which could be why there aren’t papers since then about it. All the same, I couldn’t find any implementations of it online, and there are a few tricky parts, so in this post I’m going to work through the implementation.

Note: The implementation that I’ve worked out here uses spheres to represent the obstacles. This works pretty well in general by just making the sphere large enough to cover whatever obstacle you’re avoiding. But if you want a more precise control around other shapes, you can check out the appendix of Dr. Khatib’s paper, where he works provides the math for cubes and cones as well.

Note: You can find all of the code I use here and everything you need for the VREP implementation up on my GitHub. I’ve precalculated the functions that are required, because generating them is quite computationally intensive. Hopefully the file saving doesn’t get weird between different operating systems, but if it does, try deleting all of the files in the ur5_config folder and running the code again. This will regenerate those files (on my laptop this takes ~4 hours, though, so beware).

The general idea

Since it’s from Dr. Khatib, you might expect that this approach involves task space. And indeed, your possible suspicions are correct! The algorithm is going to work by identifying forces in Cartesian coordinates that will move any point of the arm that’s too close to an obstacle away from it. The algorithm follows the form:

Setup

• Specify obstacle location and size
• Specify a threshold distance to the obstacle

While running

• Find the closest point of each arm segment to obstacles
• If within threshold of obstacle, generate force to apply to that point
• Transform this force into joint torques
• Add directly to the outgoing control signal

Something that you might notice about this is that it’s similar to the addition of the null space controller that we’ve seen before in operational space control. There’s a distinct difference here though, in that the control signal for avoiding obstacles is added directly to the outgoing control signal, and that it’s not filtered (like the null space control signal) such that there’s no guarantee that it won’t affect the movement of the end-effector. In fact, it’s very likely to affect the movement of the end-effector, but that’s also desirable, as not ramming the arm through an obstacle is as important as getting to the target.

OK, let’s walk through these steps one at a time.

Setup

I mentioned that we’re going to treat all of our obstacles as spheres. It’s actually not much harder to do these calculations for cubes too, but this is already going to be long enough so I’m only addressing sphere’s here. This algorithm assumes we have a list of every obstacle’s centre-point and radius.

We want the avoidance response of the system to be a function of the distance to the obstacle, such that the closer the arm is to the obstacle the stronger the response. The function that Dr. Khatib provides is of the following form:

$\textbf{F}_{psp} = \left\{ \begin{array}{cc}\eta (\frac{1.0}{\rho} - \frac{1}{\rho_0}) \frac{1}{\rho^2} \frac{\partial \rho}{\partial \textbf{x}} & \rho \leq \rho_0 \\ \textbf{0} & \rho > \rho_0 \end{array} \right. ,$

where $\rho$ is the distance to the target, $\rho_0$ is the threshold distance to the target at which point the avoidance function activates, $\frac{\partial \rho}{\partial \textbf{x}}$ is the partial derivative of the distance to the target with respect to a given point on the arm, and $\eta$ is a gain term.

This function looks complicated, but it’s actually pretty intuitive. The partial derivative term in the function works simply to point in the opposite direction of the obstacle, in Cartesian coordinates, i.e. tells the system how to get away from the obstacle. The rest of the term is just a gain that starts out at zero when $\rho = \rho_0$, and gets huge as the obstacle nears the object (as $\rho \to 0 \Rightarrow \frac{1}{\rho} \to \infty$). Using $\eta = .2$ and $\rho_0 = .2$ gives us a function that looks like

So you can see that very quickly a very, very strong push away from this obstacle is going to be generated once we enter the threshold distance. But how do we know exactly when we’ve entered the threshold distance?

Find the closest point

We want to avoid the obstacle with our whole body, but it turns out we can reduce the problem to only worrying about the closest point of each arm segment to the obstacle, and move that one point away from the obstacle if threshold distance is hit.

To find the closest point on a given arm segment to the obstacle we’ll do some pretty neat trig. I’ll post the code for it and then discuss it below. In this snippet, p1 and p2 are the beginning and ending $(x,y,z)$ locations of arm segment (which we are assuming is a straight line), and v is the center of the obstacle.

# the vector of our line
vec_line = p2 - p1
# the vector from the obstacle to the first line point
vec_ob_line = v - p1
# calculate the projection normalized by length of arm segment
projection = (np.dot(vec_ob_line, vec_line) /
np.dot(vec_line, vec_line))
if projection < 0:
# then closest point is the start of the segment
closest = p1
elif projection > 1:
# then closest point is the end of the segment
closest = p2
else:
closest = p1 + projection * vec_line


The first thing we do is find the arm segment line, and then line from the obstacle center to the start point of the arm segment. Once we have these, we do:

$\frac{\textbf{v}_\textrm{ob\_line} \; \cdot \; \textbf{v}_\textrm{line}}{\textbf{v}_\textrm{line} \; \cdot \; \textbf{v}_\textrm{line}},$

using the geometric definition of the dot product two vectors, we can rewrite the above as

$\frac{||\textbf{v}_\textrm{ob\_line}|| \; || \textbf{v}_\textrm{line} || \; \textrm{cos}(\theta)}{||\textbf{v}_\textrm{line}||^2} = \frac{||\textbf{v}_\textrm{ob\_line}||} {||\textbf{v}_\textrm{line}||} \textrm{cos}(\theta)$

which reads as the magnitude of vec_ob_line divided by the magnitude of vec_line (I know, these are terrible names, sorry) multiplied by the angle between the two vectors. If the angle between the vectors is < 0 (projection will also be < 0), then right off the bat we know that the start of the arm segment, p1, is the closest point. If the projection value is > 1, then we know that 1) the length from the start of the arm segment to the obstacle is longer than the length of the arm, and 2) the angle is such that the end of the arm segment, p2, is the closest point to the obstacle.

Finally, in the last case we know that the closest point is somewhere along the arm segment. To find where exactly, we do the following

$\textbf{p}_1 + \textrm{projection} \; \textbf{v}_\textrm{line},$

which can be rewritten

$\textbf{p}_1 + \frac{||\textbf{v}_\textrm{ob\_line}||} {||\textbf{v}_\textrm{line}||} \textrm{cos}(\theta) \; \textbf{v}_\textrm{line},$

I find it more intuitive if we rearrange the second term to be

$\textbf{p}_1 + \frac{\textbf{v}_\textrm{line}} {||\textbf{v}_\textrm{line}||} \; ||\textbf{v}_\textrm{ob\_line} || \; \textrm{cos}(\theta).$

So then what this is all doing is starting us off at the beginning of the arm segment, p1, and to that we add this other fun term. The first part of this fun term provides direction normalized to magnitude 1. The second part of this term provides magnitude, specifically the exact distance along vec_line we need to traverse to form reach a right angle (giving us the shortest distance) pointing at the obstacle. This handy figure from the Wikipedia page helps illustrate exactly what’s going on with the second part, where B is be vec_line and A is vec_ob_line:

Armed with this information, we understand how to find the closest point of each arm segment to the obstacle, and we are now ready to generate a force to move the arm in the opposite direction!

Check distance, generate force

To calculate the distance, all we have to do is calculate the Euclidean distance from the closest point of the arm segment to the center of the sphere, and then subtract out the radius of the sphere:

# calculate distance from obstacle vertex to the closest point
dist = np.sqrt(np.sum((v - closest)**2))
# account for size of obstacle
rho = dist - obstacle[3]


Once we have this, we can check it and generate $F_{psp}$ using the equation we defined above. The one part of that equation that wasn’t specified was exactly what $\frac{\partial \rho}{\partial \textbf{x}}$ was. Since it’s just the partial derivative of the distance to the target with respect to the closest point, we can calculate it as the normalized difference between the two points:

drhodx = (v - closest) / rho


Alright! Now we’ve found the closest point, and know the force we want to apply, from here it’s standard operational space procedure.

Transform the force into torques

As we all remember, the equation for transforming a control signal from operational space to involves two terms aside from the desired force. Namely, the Jacobian and the operational space inertia matrix:

$\textbf{u}_\textrm{psp} = \textbf{J}^T_{psp} \textbf{M}_{psp} \textbf{F}_{psp},$

where $\textbf{J}_{psp}$ is the Jacobian for the point of interest, $\textbf{M}_{psp}$ is the operational space inertia matrix for the point of interest, and $\textbf{F}_{psp}$ is the force we defined above.

Calculating the Jacobian for an unspecified point

So the first thing we need to calculate is the Jacobian for this point on the arm. There are a bunch of ways you could go about this, but the way I’m going to do it here is by building on the post where I used SymPy to automate the Jacobian derivation. The way we did that was by defining the transforms from the origin reference frame to the first link, from the first link to the second, etc, until we reached the end-effector. Then, whenever we needed a Jacobian we could string together the transforms to get the transform from the origin to that point on the arm, and take the partial derivative with respect to the joints (using SymPy’s derivative method).

As an example, say we wanted to calculate the Jacobian for the third joint, we would first calculate:

$^3_{\textrm{org}}\textbf{T} = ^0_{\textrm{org}}\textbf{T} \; ^1_0\textbf{T} \; ^2_1\textbf{T} \; ^3_2\textbf{T},$

where $^m_n\textbf{T}$ reads the transform from reference frame $m$ to reference frame $n$.

Once we have this transformation matrix, $^3_\textrm{org}\textbf{T}$, we multiply it by the point of interest in reference frame 3, which, previously, has usually been $\textbf{x} = [0, 0, 0]$. In other words, usually we’re just interested in the origin of reference frame 3. So the Jacobian is just

$\frac{\partial \; ^3_\textrm{org}\textbf{T} \textbf{x}}{\partial \textbf{q}}.$

what if we’re interested in some non-specified point along link 3, though? Well, using SymPy we set make $\textbf{x} = [x_0, x_1, x_2, 1]$ instead of $\textbf{x} = [0, 0, 0, 1]$ (recall the 1 at the end in these vectors is just to make the math work), and make the Jacobian function SymPy generates for us dependent on both $\textbf{q}$ and $\textbf{x}$, rather than just $\textbf{q}$. In code this looks like:

Torg3 = self._calc_T(name="3")
# transform x into world coordinates
Torg3x = sp.simplify(Torg3 * sp.Matrix(x))
J3_func = sp.lambdify(q + x, Torg3)


Now it’s possible to calculate the Jacobian for any point along link 3 just by changing the parameters that we pass into J3_func! Most excellent.

We are getting closer.

NOTE: This parameterization can significantly increase the build time of the function, it took my laptop about 4 hours. To decrease build time you can try commenting out the simplify calls from the code, which might slow down run-time a bit but significantly drops the generation time.

Where is the closest point in that link’s reference frame?

A sneaky problem comes up when calculating the closest point of each arm segment to the object: We’ve calculated the closest point of each arm segment in the origin’s frame of reference, and we need thew relative to each link’s own frame of reference. Fortunately, all we have to do is calculate the inverse transform for the link of interest. For example, the inverse transform of $^3_\textrm{org}\textbf{T}$ transforms a point from the origin’s frame of reference to the reference frame of the 3rd joint.

I go over how to calculate the inverse transform at the end of my post on forward transformation matrices, but to save you from having to go back and look through that, here’s the code to do it:

Torg3 = self._calc_T(name="3")
rotation_inv = Torg3[:3, :3].T
translation_inv = -rotation_inv * Torg3[:3, 3]
Torg3_inv = rotation_inv.row_join(translation_inv).col_join(
sp.Matrix([[0, 0, 0, 1]]))


And now to find the closest point in the coordinates of reference frame 3 we simply

x = np.dot(Torg3_inv, closest)


This x value is what we’re going to plug in as parameters to our J3_func above to find the Jacobian for the closest point on link 3.

Calculate the operational space inertia matrix for the closest point

OK. With the Jacobian for the point of interest we are now able to calculate the operational space inertia matrix. This code I’ve explicitly worked through before, and I’ll show it in the full code below, so I won’t go over it again here.

The whole implementation

You can run an example of all this code controlling the UR5 arm to avoid obstacles in VREP using this code up on my GitHub. The specific code added to implement obstacle avoidance looks like this:

# find the closest point of each link to the obstacle
for ii in range(robot_config.num_joints):
# get the start and end-points of the arm segment
p1 = robot_config.Tx('joint%i' % ii, q=q)
if ii == robot_config.num_joints - 1:
p2 = robot_config.Tx('EE', q=q)
else:
p2 = robot_config.Tx('joint%i' % (ii + 1), q=q)

# calculate minimum distance from arm segment to obstacle
# the vector of our line
vec_line = p2 - p1
# the vector from the obstacle to the first line point
vec_ob_line = v - p1
# calculate the projection normalized by length of arm segment
projection = (np.dot(vec_ob_line, vec_line) /
np.sum((vec_line)**2))
if projection < 0:
# then closest point is the start of the segment
closest = p1
elif projection > 1:
# then closest point is the end of the segment
closest = p2
else:
closest = p1 + projection * vec_line
# calculate distance from obstacle vertex to the closest point
dist = np.sqrt(np.sum((v - closest)**2))
# account for size of obstacle

if rho < threshold:
eta = .02
drhodx = (v - closest) / rho
Fpsp = (eta * (1.0/rho - 1.0/threshold) *
1.0/rho**2 * drhodx)

# get offset of closest point from link's reference frame
T_inv = robot_config.T_inv('link%i' % ii, q=q)
m = np.dot(T_inv, np.hstack([closest, [1]]))[:-1]
# calculate the Jacobian for this point
Jpsp = robot_config.J('link%i' % ii, x=m, q=q)[:3]

# calculate the inertia matrix for the
# point subjected to the potential space
Mxpsp_inv = np.dot(Jpsp,
np.dot(np.linalg.pinv(Mq), Jpsp.T))
svd_u, svd_s, svd_v = np.linalg.svd(Mxpsp_inv)
# cut off singular values that could cause problems
singularity_thresh = .00025
for ii in range(len(svd_s)):
svd_s[ii] = 0 if svd_s[ii] < singularity_thresh else \
1./float(svd_s[ii])
# numpy returns U,S,V.T, so have to transpose both here
Mxpsp = np.dot(svd_v.T, np.dot(np.diag(svd_s), svd_u.T))

u_psp = -np.dot(Jpsp.T, np.dot(Mxpsp, Fpsp))
if rho < .01:
u = u_psp
else:
u += u_psp


The one thing in this code I didn’t talk about is that you can see that if rho < .01 then I set u = u_psp instead of just adding u_psp to u. What this does is basically add in a fail safe take over of the robotic control saying that “if we are about to hit the obstacle forget about everything else and get out of the way!”.

Results

And that’s it! I really enjoy how this looks when it’s running, it’s a really effective algorithm. Let’s look at some samples of it in action.

First, in a 2D environment, where it’s real easy to move around the obstacle and see how it changes in response to the new obstacle position. The red circle is the target and the blue circle is the obstacle:

And in 3D in VREP, running the code example that I’ve put up on my GitHub implementing this. The example of it running without obstacle avoidance code is on the left, and running with obstacle avoidance is on the right. It’s kind of hard to see but on the left the robot moves through the far side of the obstacle (the gold sphere) on its way to the target (the red sphere):

And one last example, the arm dodging a moving obstacle on its way to the target.

The implementation is a ton of fun to play around with. It’s a really nifty algorithm, that works quite well, and I haven’t found many alternatives in papers that don’t go into path planning (if you know of some and can share that’d be great!). This post was a bit of a journey, but hopefully you found it useful! I continue to find it impressive how many different neat features like this can come about once you have the operational space control framework in place.

## Velocity limiting in operational space control

Recently, I was reading through an older paper on effective operational space control, talking specifically point to point control in operational space. The paper mentioned that even if you have a perfect model of the system, you’re going to run into trouble if you use just a basic PD formula to define your control signal in operational space:

$u_x = k_p (\textbf{x}^* - \textbf{x}) - k_v \dot{\textbf{x}},$

where $\textbf{x}$ and $\dot{\textbf{x}}$ are the system position and velocity in operational space, $\textbf{x}^*$ is the target position, and $k_p$ and $k_v$ are gains.

If you define your operational space control signal like this, and then translate this signal into joint torques (using, for example, methods discussed in other posts), you’re going to see a very non-straight trajectory emerge in larger movements as a result of “actuator saturation, and bandwidth and velocity limitations”. In the example of a standard robot, you might run into issues with your motors not being able to actually generate the torques that have been specified, the frequency of control and feedback might not be sufficient, and you could hit hard constraints on system velocity. The solution to this problem was presented in this 1987 paper by Dr. Oussama Khatib, and is pretty slick and very useful, so I thought I’d write it up here for any other unfortunate souls wandering around in ignorance. First though, here’s what it looks like to move large point to point distances without velocity limiting:

As you can see, the system isn’t moving in a straight line, which can be very aggravating if you’ve worked and reworked out the equations and double checked all your parameters, etc etc. A few things, first, when working with simulations it’s easy to forget how ridiculously fast this actually would be in real-time. Even though it takes a minute to simulate the above movement, in real-time, is happening over the course of 200ms. Taking that into account, this is pretty good. Also, there’s an obvious solution here, slow down your movement. The source of this problem is largely that all of the motors are not able to apply the torques specified and move at the required speed. Some of the motors have a lot less mass to throw around and will be able to move at the specified torques, but not all. Hence the not straight trajectory.

You can of course drop the gains on your PD signal, but that’s not really a great methodical solution. So, what can we do?

Well, if we rearrange the PD control signal specified above into

$u_x = k_v (\dot{\textbf{x}}^* - \dot{\textbf{x}}),$

where $\dot{\textbf{x}}^*$ is the desired velocity, we see that this signal can be interpreted as a pure velocity servo-control signal, with velocity gain $k_v$ and a desired velocity

$\dot{\textbf{x}}^* = \frac{k_p}{k_v}(\textbf{x}^* - \textbf{x})$.

When things are in this form, it becomes a bit more clear what we have to do: limit the desired velocity to be at most some specified maximum velocity of the end-effector, $V_\textrm{max}$. This value should be low enough that the transformation into joint torques doesn’t result in anything larger than the actuators can generate.

Taking $V_\textrm{max}$, what we want is to clip the magnitude of the control signal to be $V_\textrm{max}$ if it’s ever larger (in positive or negative directions), and to be equal to $\frac{kp}{kv}(\textbf{x}^* - \textbf{x})$ otherwise. The math for this works out such that we can accomplish this with a control signal of the form:

$\textbf{u}_\textbf{x} = -k_v (\dot{\textbf{x}} + \textrm{sat}\left(\frac{V_\textrm{max}}{\lambda |\tilde{\textbf{x}}|} \right) \lambda \tilde{\textbf{x}})$,

where $\lambda = \frac{k_p}{k_v}$ , $\tilde{\textbf{x}} = \textbf{x} - \textbf{x}^*$, and $\textrm{sat}$ is the saturation function, such that

$\textrm{sat}(y) = \left\{ \begin{array}{cc} |y| \leq 1 & \Rightarrow y \\ |y| > 1 & \Rightarrow 1 \end{array} \right.$

where $|y|$ is the absolute value of $y$, and is applied element wise to the vector $\tilde{\textbf{x}}$ in the control signal.

As a result of using this saturation function, the control signal behaves differently depending on whether or not $\dot{\textbf{x}}^* > V_\textrm{max}$:

$\textbf{u}_\textbf{x} = \left\{ \begin{array}{cc} \dot{\textbf{x}}^* \geq V_\textrm{max} & \Rightarrow -k_v (\dot{\textbf{x}} + V_\textbf{max} \textrm{sgn}(\tilde{\textbf{x}})) \\ \dot{\textbf{x}}^* < V_\textrm{max} & \Rightarrow -k_v \dot{\textbf{x}} + k_p \tilde{\textbf{x}} \end{array} \right.$

where $\textrm{sgn}(y)$ is a function that returns -1 if $y < 0$ and 1 if $y \geq 0$, and is again applied element-wise to vectors. Note that the control signal in the second condition is equivalent to our original PD control signal $k_p(\textbf{x}^* - \textbf{x}) - k_v \dot{\textbf{x}}$. If you’re wondering about negative signs make sure you note that $\tilde{\textbf{x}} = \textbf{x} - \textbf{x}^*$ and not $\textbf{x}^* - \textbf{x}$, as you might assume.

So now the control signal is behaving exactly as desired! Moves the system towards the target, but no faster than the specified maximum velocity. Now our trajectories look like this:

So those are starting to look a lot better! The first thing you’ll notice is that this is a fair bit slower of a movement. Well, actually, it’s waaaayyyy slower because the playback speed here is 4x faster than in that first animation, and this is a movement over 2s. Which has pros and cons, con: it’s slower, pro: it’s straighter, and you’re less likely to be murdered by it. When you move from simulations to real systems that latter point really moves way up the priority list.

Second thing to notice, the system seems to be minimising the error along one dimension, and then along the next, and then arrives at the target. What’s going on?  Because the error along each of the $(x,y,z)$ dimensions isn’t the same, when speed gets clipped along one of the dimensions you’re no longer going to be moving in a straight line directly to the target. To address this, we’re going to add a scaling term whenever clipping happens, such that you reduce the speed you move along each dimension by the same ratio, so that you’re still moving in a straight line.

It’s a liiiiittle bit more complicated than that, but not much. First, we’ll calculate the values being passed in to the saturation function for each $(x,y,z)$ dimension. We’ll then check to see if any of them are going to get clipped, and if there’s more than one that saturates we’ll find the one that is affected the most. After we’ve identified which dimension it is, we go through and calculate what the control signal would have been without velocity limiting, and what it will be now with velocity limiting. This scaling term tells us how much the control signal was reduced, and we can then use it to reduce the control signals of the other dimensions by the same amount. These other dimensions might still saturate, though, so we have to recalculate the saturation function for them once they’ve been scaled. Here’s what this all looks like in code:

# implement velocity limiting
lamb = kp / kv
x_tilde = xyz - target_xyz
sat = vmax / (lamb * np.abs(x_tilde))
scale = np.ones(3)
if np.any(sat < 1):
index = np.argmin(sat)
unclipped = kp * x_tilde[index]
clipped = kv * vmax * np.sign(x_tilde[index])
scale = np.ones(3) * clipped / unclipped
scale[index] = 1
u_xyz = -kv * (dx + np.clip(sat / scale, 0, 1) *
scale * lamb * x_tilde)


And now, finally, we start getting the trajectories that we’ve been wanting the whole time:

And finally we can rest easy, knowing that our robot is moving at a reasonable speed along a direct path to its goals. Wherever you’d like to use this neato ‘ish you should be able to just paste in the above code, define your vmax, kp, and kv values and be good to go!

## Using SymPy’s lambdify for generating transform matrices and Jacobians

I’ve been working in VREP with some of their different robot models and testing out force control, and one of the things that becomes pretty important for efficient workflow is to have a streamlined method for setting up the transform matrices and calculating the Jacobians for different robots. You do not want to be working these all out by hand and then writing them in yourself.

A solution that’s been working well for me (and is fully implemented in Python) is to use SymPy to set up the basic transform matrices, from each joint to the next, and then use it’s derivative function to calculate the Jacobian. Once this is calculated you can then use SymPy’s lambdify function to parameterize this, and off you go! In this post I’m going to work through an example for controlling VREP’s UR5 arm using force control. And if you’re just looking for code examples, you can find it all up on my GitHub.

Edit: Updated the code to be much nicer, added saving of calculated functions, and a null space controller.
Edit 2: Removed the simplify calls from the code, not worth the generation time increase (if execution is a great concern can generate the functions using cython).

Setting up the transform matrices

This is the part of this process that is unique to each arm. The goal is to set up a system so that you can specify your transforms for each joint (and to each centre-of-mass (COM) too, of course) and then be on your way. So here’s the UR5, cute thing that it is:

For the UR5, there are 6 joints, and we’re going to be specifying 9 transform matrices: 6 joints and the COM for three arm segments (the remaining arm segment COMs are centered at their respective joint’s reference frame). The joints are all rotary, with 0 and 4 rotating around the z-axis, and the rest all rotating around x.

So first, we’re going to create a class called robot_config. Then, to create our transform matrices in SymPy first we need to set up the variables we’re going to be using:

# set up our joint angle symbols (6th angle doesn't affect any kinematics)
self.q = [sp.Symbol('q%i'%ii) for ii in range(6)]
# segment lengths associated with each joint
self.L = np.array([0.0935, .13453, .4251, .12, .3921, .0935, .0935, .0935])


where self.q is an array storing all our joint angle symbols, and self.L is an array of all of the offsets for each joint and arm segment lengths.

Using these to create the transform matrices for the joints, we get a set up that looks like this:

# transform matrix from origin to joint 0 reference frame
self.T0org = sp.Matrix([[sp.cos(self.q[0]), -sp.sin(self.q[0]), 0, 0],
[sp.sin(self.q[0]), sp.cos(self.q[0]), 0, 0],
[0, 0, 1, self.L[0]],
[0, 0, 0, 1]])

# transform matrix from joint 0 to joint 1 reference frame
self.T10 = sp.Matrix([[1, 0, 0, -L[1]],
[0, sp.cos(-self.q[1] + sp.pi/2),
-sp.sin(-self.q[1] + sp.pi/2), 0],
[0, sp.sin(-self.q[1] + sp.pi/2),
sp.cos(-self.q[1] + sp.pi/2), 0],
[0, 0, 0, 1]])

# transform matrix from joint 1 to joint 2 reference frame
self.T21 = sp.Matrix([[1, 0, 0, 0],
[0, sp.cos(-self.q[2]),
-sp.sin(-self.q[2]), self.L[2]],
[0, sp.sin(-self.q[2]),
sp.cos(-self.q[2]), 0],
[0, 0, 0, 1]])

# transform matrix from joint 2 to joint 3
self.T32 = sp.Matrix([[1, 0, 0, L[3]],
[0, sp.cos(-self.q[3] - sp.pi/2),
-sp.sin(-self.q[3] - sp.pi/2), self.L[4]],
[0, sp.sin(-self.q[3] - sp.pi/2),
sp.cos(-self.q[3] - sp.pi/2), 0],
[0, 0, 0, 1]])

# transform matrix from joint 3 to joint 4
self.T43 = sp.Matrix([[sp.sin(-self.q[4] - sp.pi/2),
sp.cos(-self.q[4] - sp.pi/2), 0, -self.L[5]],
[sp.cos(-self.q[4] - sp.pi/2),
-sp.sin(-self.q[4] - sp.pi/2), 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])

# transform matrix from joint 4 to joint 5
self.T54 = sp.Matrix([[1, 0, 0, 0],
[0, sp.cos(self.q[5]), -sp.sin(self.q[5]), 0],
[0, sp.sin(self.q[5]), sp.cos(self.q[5]), self.L[6]],
[0, 0, 0, 1]])

# transform matrix from joint 5 to end-effector
self.TEE5 = sp.Matrix([[1, 0, 0, self.L[7]],
[0, 1, 0, 0],
[0, 0, 1, 0],
[0, 0, 0, 1]])


You can see a bunch of offsetting of the joint angles by -sp.pi/2 and this is to account for the expected 0 angle (straight along the reference frame’s x-axis) at those joints being different than the 0 angle defined in the VREP simulation (at a 90 degrees from the x-axis). You can find these by either looking at and finding the joints’ 0 position in VREP or by trial-and-error empirical analysis.

Once you have your transforms, then you have to specify how to move from the origin to each reference frame of interest (the joints and COMs). For that, I’ve just set up a simple function with a switch statement:

# point of interest in the reference frame (right at the origin)
self.x = sp.Matrix([0,0,0,1])

def _calc_T(self, name, lambdify=True):
""" Uses Sympy to generate the transform for a joint or link

name string: name of the joint or link, or end-effector
lambdify boolean: if True returns a function to calculate
the transform. If False returns the Sympy
matrix
"""

# check to see if we have our transformation saved in file
if os.path.isfile('%s/%s.T' % (self.config_folder, name)):
Tx = cloudpickle.load(open('%s/%s.T' % (self.config_folder, name),
'rb'))
else:
if name == 'joint0' or name == 'link0':
T = self.T0org
elif name == 'joint1' or name == 'link1':
T = self.T0org * self.T10
elif name == 'joint2':
T = self.T0org * self.T10 * self.T21
T = self.T0org * self.T10 * self.Tl21
elif name == 'joint3':
T = self.T0org * self.T10 * self.T21 * self.T32
T = self.T0org * self.T10 * self.T21 * self.Tl32
elif name == 'joint4' or name == 'link4':
T = self.T0org * self.T10 * self.T21 * self.T32 * self.T43
elif name == 'joint5' or name == 'link5':
T = self.T0org * self.T10 * self.T21 * self.T32 * self.T43 * \
self.T54
elif name == 'link6' or name == 'EE':
T = self.T0org * self.T10 * self.T21 * self.T32 * self.T43 * \
self.T54 * self.TEE5
Tx = T * self.x  # to convert from transform matrix to (x,y,z)

# save to file
cloudpickle.dump(Tx, open('%s/%s.T' % (self.config_folder, name),
'wb'))

if lambdify is False:
return Tx
return sp.lambdify(self.q, Tx)


So the first part is pretty straight forward, create the transform matrix, and then at the end to get the (x,y,z) position we just multiply by a vector we created that represents a point at the origin of the last reference frame. Some of the transform matrices (the ones to the arm segments) I didn’t specify above just to cut down on space.

The second part is where we use this awesome lambify function, which lets us turn the matrix we’ve defined into a function, so that we can pass in joint angles and get back out the resulting (x,y,z) position. There’s also the option to get the straight up SymPy matrix return, in case you need the symbolic form (which we will!).

NOTE: You can also see that there’s a check built in to look for saved files, and to just load those saved files instead of recalculating things if they’re available. This is because calculating some of these matrices and their derivatives takes a long, long time. I used the cloudpickle module to do this because it’s able to easily handle saving a whole bunch of weird things that makes normal pickle sour.

Calculating the Jacobian

So now that we’re able to quickly generate the transform matrix for each point of interest on the UR5, we simply take the derivative of the equation for each (x,y,z) coordinate with respect to each joint angle to generate our Jacobian.

def _calc_J(self, name, lambdify=True):
""" Uses Sympy to generate the Jacobian for a joint or link

name string: name of the joint or link, or end-effector
lambdify boolean: if True returns a function to calculate
the Jacobian. If False returns the Sympy
matrix
"""

# check to see if we have our Jacobian saved in file
if os.path.isfile('%s/%s.J' % (self.config_folder, name)):
(self.config_folder, name), 'rb'))
else:
Tx = self._calc_T(name, lambdify=False)
J = []
# calculate derivative of (x,y,z) wrt to each joint
for ii in range(self.num_joints):
J.append([])
J[ii].append(Tx[0].diff(self.q[ii]))  # dx/dq[ii]
J[ii].append(Tx[1].diff(self.q[ii]))  # dy/dq[ii]
J[ii].append(Tx[2].diff(self.q[ii]))  # dz/dq[ii]


Here we retrieve the Tx vector from our _calc_T function, and then calculate the derivatives. When calculating the Jacobian for the end-effector, this is all we need! Huzzah!

But to calculate the Jacobian for transforming the inertia matrices of each arm segment into joint space we’re going to need the orientation information added to our Jacobian as well. This we know ahead of time, for each joint it’s a 3D vector with a 1 on the axis being rotated around. So we can predefine this:

# orientation part of the Jacobian (compensating for orientations)
self.J_orientation = [
[0, 0, 1], # joint 0 rotates around z axis
[1, 0, 0], # joint 1 rotates around x axis
[1, 0, 0], # joint 2 rotates around x axis
[1, 0, 0], # joint 3 rotates around x axis
[0, 0, 1], # joint 4 rotates around z axis
[1, 0, 0]] # joint 5 rotates around x axis


And then we just fill in the Jacobians for each reference frame with self.J_orientation up to the last joint, and fill in the rest of the Jacobian with zeros. So e.g. when we’re calculating the Jacobian for the arm segment just past the second joint we’ll use the first two rows of self.J_orientation and the rest of the rows will be 0.

So this leads us to the second half of the _calc_J function:

        end_point = name.strip('link').strip('joint')
if end_point != 'EE':
end_point = min(int(end_point) + 1, self.num_joints)
# add on the orientation information up to the last joint
for ii in range(end_point):
J[ii] = J[ii] + self.J_orientation[ii]
# fill in the rest of the joints orientation info with 0
for ii in range(end_point, self.num_joints):
J[ii] = J[ii] + [0, 0, 0]

# save to file
cloudpickle.dump(J, open('%s/%s.J' %
(self.config_folder, name), 'wb'))

J = sp.Matrix(J).T  # correct the orientation of J
if lambdify is False:
return J
return sp.lambdify(self.q, J)


The orientation information is added in, we save the result to file, and a function that takes in the joint angles and outputs the Jacobian is created (unless lambdify == False in which case the SymPy symbolic form is returned.)

Then finally, two wrapper functions are added in to make creating / accessing these functions easier. First, define a couple of dictionaries

# create function dictionaries
self._T = {}  # for transform calculations
self._J = {}  # for Jacobian calculations


and then our wrapper functions look like this

def T(self, name, q):
""" Calculates the transform for a joint or link
name string: name of the joint or link, or end-effector
q np.array: joint angles
"""
# check for function in dictionary
if self._T.get(name, None) is None:
print('Generating transform function for %s'%name)
self._T[name] = self.calc_T(name)
return self._T[name](*q)[:-1].flatten()

def J(self, name, q):
""" Calculates the transform for a joint or link
name string: name of the joint or link, or end-effector
q np.array: joint angles
"""
# check for function in dictionary
if self._J.get(name, None) is None:
print('Generating Jacobian function for %s'%name)
self._J[name] = self.calc_J(name)
return np.array(self._J[name](*q)).T


So how you use this class (all of this is in a class) is to call these T and J functions with the current joint angles. They’ll check to see if the functions have already be created or stored in file, if they haven’t then the T and / or J functions will be created, then our wrappers do a bit of formatting to get them into the proper form (i.e. transposing or cropping), and return you your (x,y,z) or Jacobian!

NOTE: It’s a bit of a misnomer to have the function be called T and actually return to you Tx, but hey this is a blog. Lay off.

Calculating the inertia matrix in joint-space and force of gravity
Now, since we’re here we might as well also calculate the functions for our inertia matrix in joint space and the effect of gravity. So, define a couple more placeholders in our robot_config class to help us:

self._M = []  # placeholder for (x,y,z) inertia matrices
self._Mq = None  # placeholder for joint space inertia matrix function
self._Mq_g = None  # placeholder for joint space gravity term function


and then add in our inertia matrix information (defined in each link’s centre-of-mass (COM) reference frame)

# create the inertia matrices for each link of the ur5
self._M.append(np.diag([1.0, 1.0, 1.0,
self._M.append(np.diag([2.5, 2.5, 2.5,
self._M.append(np.diag([5.7, 5.7, 5.7,
self._M.append(np.diag([3.9, 3.9, 3.9,
self._M.append(np.diag([0.7, 0.7, 0.7,


and then using our equations for calculating the system’s inertia and gravity we create our _calc_Mq and _calc_Mq_g functions

def _calc_Mq(self, lambdify=True):
""" Uses Sympy to generate the inertia matrix in
joint space for the ur5

lambdify boolean: if True returns a function to calculate
the Jacobian. If False returns the Sympy
matrix
"""

# check to see if we have our inertia matrix saved in file
if os.path.isfile('%s/Mq' % self.config_folder):
Mq = cloudpickle.load(open('%s/Mq' % self.config_folder, 'rb'))
else:
# get the Jacobians for each link's COM
J = [self._calc_J('link%s' % ii, lambdify=False)

# transform each inertia matrix into joint space
# sum together the effects of arm segments' inertia on each motor
Mq = sp.zeros(self.num_joints)
Mq += J[ii].T * self._M[ii] * J[ii]

# save to file
cloudpickle.dump(Mq, open('%s/Mq' % self.config_folder, 'wb'))

if lambdify is False:
return Mq
return sp.lambdify(self.q, Mq)

def _calc_Mq_g(self, lambdify=True):
""" Uses Sympy to generate the force of gravity in
joint space for the ur5

lambdify boolean: if True returns a function to calculate
the Jacobian. If False returns the Sympy
matrix
"""

# check to see if we have our gravity term saved in file
if os.path.isfile('%s/Mq_g' % self.config_folder):
'rb'))
else:
# get the Jacobians for each link's COM
J = [self._calc_J('link%s' % ii, lambdify=False)

# transform each inertia matrix into joint space and
# sum together the effects of arm segments' inertia on each motor
Mq_g = sp.zeros(self.num_joints, 1)
for ii in range(self.num_joints):
Mq_g += J[ii].T * self._M[ii] * self.gravity

# save to file
cloudpickle.dump(Mq_g, open('%s/Mq_g' % self.config_folder,
'wb'))

if lambdify is False:
return Mq_g
return sp.lambdify(self.q, Mq_g)


and wrapper functions

def Mq(self, q):
""" Calculates the joint space inertia matrix for the ur5

q np.array: joint angles
"""
# check for function in dictionary
if self._Mq is None:
print('Generating inertia matrix function')
self._Mq = self._calc_Mq()
return np.array(self._Mq(*q))

def Mq_g(self, q):
""" Calculates the force of gravity in joint space for the ur5

q np.array: joint angles
"""
# check for function in dictionary
if self._Mq_g is None:
print('Generating gravity effects function')
self._Mq_g = self._calc_Mq_g()
return np.array(self._Mq_g(*q)).flatten()


and we’re all set!

Putting it all together

Now we have nice clean code to generate everything we need for our controller. Using the controller developed in this post as a base, we can replace those calculations with the following nice compact code (which also includes a secondary null-space controller to keep the arm near resting joint angles):

# calculate position of the end-effector
# derived in the ur5 calc_TnJ class
xyz = robot_config.T('EE', q)
# calculate the Jacobian for the end effector
JEE = robot_config.J('EE', q)
# calculate the inertia matrix in joint space
Mq = robot_config.Mq(q)
# calculate the effect of gravity in joint space
Mq_g = robot_config.Mq_g(q)

# convert the mass compensation into end effector space
Mx_inv = np.dot(JEE, np.dot(np.linalg.inv(Mq), JEE.T))
svd_u, svd_s, svd_v = np.linalg.svd(Mx_inv)
# cut off any singular values that could cause control problems
singularity_thresh = .00025
for i in range(len(svd_s)):
svd_s[i] = 0 if svd_s[i] < singularity_thresh else \
1./float(svd_s[i])
# numpy returns U,S,V.T, so have to transpose both here
Mx = np.dot(svd_v.T, np.dot(np.diag(svd_s), svd_u.T))

kp = 100
kv = np.sqrt(kp)
# calculate desired force in (x,y,z) space
u_xyz = np.dot(Mx, target_xyz - xyz)
# transform into joint space, add vel and gravity compensation
u = (kp * np.dot(JEE.T, u_xyz) - np.dot(Mq, kv * dq) - Mq_g)

# calculate our secondary control signal
# calculated desired joint angle acceleration
q_des = (((robot_config.rest_angles - q) + np.pi) %
(np.pi*2) - np.pi)
u_null = np.dot(Mq, (kp * q_des - kv * dq))

# calculate the null space filter
Jdyn_inv = np.dot(Mx, np.dot(JEE, np.linalg.inv(Mq)))
null_filter = (np.eye(robot_config.num_joints) -
np.dot(JEE.T, Jdyn_inv))
u_null_filtered = np.dot(null_filter, u_null)

u += u_null_filtered


And there you go!

You can see all of this code up on my GitHub, along a full example controlling a UR5 VREP model though reaching to a series of targets. It looks something pretty much like this (slightly better because this gif was made before adding in the null space controller):

Overhead of using lambdify instead of hard-coding

This was a big question that I had, because when I’m running simulations the time step is on the order of a few milliseconds, with the controller code called at every time step. So I reaaaally can’t afford a crazy overhead for using lambdify.

To test this, I used the handy Python timeit, which requires a bit awkward setup, but quite nicely calls the function a whole bunch of times (1,000,000 by default) and accounts for various other things going on that could affect the execution time.

I tested two sample functions, one simpler than the other. Here’s the code for setting up and testing the first function:

import timeit
import seaborn

# Test 1 ----------------------------------------------------------------------
print('\nTest function 1: ')
time_sympy1 = timeit.timeit(
stmt = 'f(np.random.random(), np.random.random())',
setup = 'import numpy as np;\
import sympy as sp;\
q0 = sp.Symbol("q0");\
l0 = sp.Symbol("l0");\
a = sp.cos(q0) * l0;\
f = sp.lambdify((q0, l0), a, "numpy")')
print('Sympy lambdify function 1 time: ', time_sympy1)

time_hardcoded1 = timeit.timeit(
stmt = 'np.cos(np.random.random())*np.random.random()',
setup = 'import numpy as np')
print('Hard coded function 1 time: ', time_hardcoded1)


Pretty simple, a bit of a pain in the sympy setup, but other than that not bad at all. The second function I tested was just a random collection of cos and sin calls that resemble what gets computed in a Jacobian:

l1*np.sin(q0 - l0*np.sin(q1)*np.cos(q2) - l2*np.sin(q2) - l0*np.sin(q1) + q0*l0)*np.cos(q0) + l2*np.sin(q0)


And here’s the results:

So it’s slower for sure, but again this is the difference in time after 1,000,000 function calls, so until some big optimization needs to be done using the SymPy lambdify function is definitely worth the slight gain in execution time for the insane convenience.

The full code for the timing tests here are also up on my GitHub.

## Dynamic movement primitives part 4: Avoiding obstacles – update

Edit: Previously I posted this blog post on incorporating obstacle avoidance, but after a recent comment on the code I started going through it again and found a whole bunch of issues. Enough so that I’ve recoded things and I’m going to repost it now with working examples and a description of the changes I made to get it going. The edited sections will be separated out with these nice horizontal lines. If you’re just looking for the example code, you can find it up on my pydmps repo, here.

Alright. Previously I’d mentioned in one of these posts that DMPs are awesome for generalization and extension, and one of the ways that they can be extended is by incorporating obstacle avoidance dynamics. Recently I wanted to implement these dynamics, and after a bit of finagling I got it working, and so that’s going to be the subject of this post.

There are a few papers that talk about this, but the one we’re going to use is Biologically-inspired dynamical systems for movement generation: automatic real-time goal adaptation and obstacle avoidance by Hoffmann and others from Stefan Schaal’s lab. This is actually the second paper talking about obstacle avoidance and DMPs, and this is a good chance to stress one of the most important rules of implementing algorithms discussed in papers: collect at least 2-3 papers detailing the algorithm (if possible) before attempting to implement it. There are several reasons for this, the first and most important is that there are likely some typos in the equations of one paper, by comparing across a few papers it’s easier to identify trickier parts, after which thinking through what the correct form should be is usually straightforward. Secondly, often equations are updated with simplified notation or dynamics in later papers, and you can save yourself a lot of headaches in trying to understand them just by reading a later iteration. I recklessly disregarded this advice and started implementation using a single, earlier paper which had a few key typos in the equations and spent a lot of time tracking down the problem. This is just a peril inherent in any paper that doesn’t provide tested code, which is almost all, sadface.

OK, now on to the dynamics. Fortunately, I can just reference the previous posts on DMPs here and don’t have to spend any time discussing how we arrive at the DMP dynamics (for a 2D system):

$\ddot{\textbf{y}} = \alpha_y (\beta_y( \textbf{g} - \textbf{y}) - \dot{\textbf{y}}) + \textbf{f},$

where $\alpha_y$ and $\beta_y$ are gain terms, $\textbf{g}$ is the goal state, $\textbf{y}$ is the system state, $\dot{\textbf{y}}$ is the system velocity, and $\textbf{f}$ is the forcing function.
As mentioned, DMPs are awesome because now to add obstacle avoidance all we have to do is add another term

$\ddot{\textbf{y}} = \alpha_y (\beta_y( \textbf{g} - \textbf{y}) - \dot{\textbf{y}}) + \textbf{f} + \textbf{p}(\textbf{y}, \dot{\textbf{y}}),$

where $\textbf{p}(\textbf{y}, \dot{\textbf{y}})$ implements the obstacle avoidance dynamics, and is a function of the DMP state and velocity. Now then, the question is what are these dynamics exactly?

Obstacle avoidance dynamics

It turns out that there is a paper by Fajen and Warren that details an algorithm that mimics human obstacle avoidance. The idea is that you calculate the angle between your current velocity and the direction to the obstacle, and then turn away from the obstacle. The angle between current velocity and direction to the obstacle is referred to as the steering angle, denoted $\varphi$, here’s a picture of it:

So, given some $\varphi$ value, we want to specify how much to change our steering direction, $\dot{\varphi}$, as in the figure below:

If we’re on track to hit the object (i.e. $\varphi$ is near 0) then we steer away hard, and then make your change in direction less and less as the angle between your heading (velocity) and the object is larger and larger. Formally, define $\dot{\varphi}$ as

$\dot{\varphi} = \gamma \;\varphi \;\textrm{exp}(-\beta | \varphi |),$

where $\gamma$ and $\beta$ are constants, which are specified as $1000$ and $\frac{20}{\pi}$ in the paper, respectively.

Edit: OK this all sounds great, but quickly you run into issues here. The first is how do we calculate $\varphi$? In the paper I was going off of they used a dot product between the $\dot{\textbf{y}}$ vector and the $\textbf{o} - \textbf{y}$ vector to get the cosine of the angle, and then use np.arccos to get the angle from that. There is a big problem with this here, however, that’s kind of subtle: You will never get a negative angle when you calculate this, which, of course. That’s not how np.arccos works, but it is still what we need so we will be able to tell if we should be turning left or right to avoid this object!

So we need to use a different way of calculating the angle, one that tells us if the object is in a + or – angle relative to the way we’re headed. To calculate an angle that will give us + or -, we’re going to use the np.arctan2 function.

We want to center things around the way we’re headed, so first we calculate the angle of the direction vector, $\dot{\textbf{y}}$. Then we create a rotation vector, R_dy to rotate the vector describing the direction of the object. This shifts things around so that if we’re moving straight towards the object it’s at 0 degrees, if we’re headed directly away from it, it’s at 180 degrees, etc. Once we have that vector, nooowwww we can find the angle of the direction of the object and that’s what we’re going to use for phi. Huzzah!

# get the angle we're heading in
phi_dy = -np.arctan2(dy[1], dy[0])
R_dy = np.array([[np.cos(phi_dy), -np.sin(phi_dy)],
[np.sin(phi_dy), np.cos(phi_dy)]])
# calculate vector to object relative to body
obj_vec = obstacle - y
# rotate it by the direction we're going
obj_vec = np.dot(R_dy, obj_vec)
# calculate the angle of obj relative to the direction we're going
phi = np.arctan2(obj_vec[1], obj_vec[0])


This $\dot{\varphi}$ term can be thought of as a weighting, telling us how much we need to rotate based on how close we are to running into the object. To calculate how we should rotate we’re going to calculate the angle orthonormal to our current velocity, then weight it by the distance between the object and our current state on each axis. Formally, this is written:

$\textbf{R} \; \dot{\textbf{y}},$

where $\textbf{R}$ is the axis $(\textbf{o} - \textbf{y}) \times \dot{\textbf{y}}$ rotated 90 degrees (the $\times$ denoting outer product here). The way I’ve been thinking about this is basically taking your velocity vector, $\dot{\textbf{y}}$, and rotating it 90 degrees. Then we use this rotated vector as a row vector, and weight the top row by the distance between the object and the system along the $x$ axis, and the bottom row by the difference along the $\textbf{y}$ axis. So in the end we’re calculating the angle that rotates our velocity vector 90 degrees, weighted by distance to the object along each axis.

So that whole thing takes into account absolute distance to object along each axis, but that’s not quite enough. We also need to throw in $\dot{\varphi}$, which looks at the current angle. What this does is basically look at ‘hey are we going to hit this object?’, if you are on course then make a big turn and if you’re not then turn less or not at all. Phew.

OK so all in all this whole term is written out

$\textbf{p}(\textbf{y}, \dot{\textbf{y}}) = \textbf{R} \; \dot{\textbf{y}} \; \dot{\varphi},$

and that’s what we add in to the system acceleration. And now our DMP can avoid obstacles! How cool is that?

Super compact, straight-forward to add, here’s the code:

Edit: OK, so not suuuper compact. I’ve also added in another couple checks. The big one is “Is this obstacle between us and the target or not?”. So I calculate the Euclidean distance to the goal and the obstacle, and if the obstacle is further away then the goal, set the avoidance signal to zero (performed at the end of the if)! This took care of a few weird errors where you would get a big deviation in the trajectory if it saw an obstacle past the goal, because it was planning on avoiding it, but then was pulled back in to the goal before the obstacle anyways so it was a pointless exercise. The other check added in is just to make sure you only add in obstacle avoidance if the system is actually moving. Finally, I also changed the $\gamma = 100$ instead of $1000$.

def avoid_obstacles(y, dy, goal):
p = np.zeros(2)

for obstacle in obstacles:
# based on (Hoffmann, 2009)

# if we're moving
if np.linalg.norm(dy) > 1e-5:

# get the angle we're heading in
phi_dy = -np.arctan2(dy[1], dy[0])
R_dy = np.array([[np.cos(phi_dy), -np.sin(phi_dy)],
[np.sin(phi_dy), np.cos(phi_dy)]])
# calculate vector to object relative to body
obj_vec = obstacle - y
# rotate it by the direction we're going
obj_vec = np.dot(R_dy, obj_vec)
# calculate the angle of obj relative to the direction we're going
phi = np.arctan2(obj_vec[1], obj_vec[0])

dphi = gamma * phi * np.exp(-beta * abs(phi))
R = np.dot(R_halfpi, np.outer(obstacle - y, dy))
pval = -np.nan_to_num(np.dot(R, dy) * dphi)

# check to see if the distance to the obstacle is further than
# the distance to the target, if it is, ignore the obstacle
if np.linalg.norm(obj_vec) > np.linalg.norm(goal - y):
pval = 0

p += pval
return p


And that’s it! Just add this method in to your DMP system and call avoid_obstacles at every timestep, and add it in to your DMP acceleration.

You hopefully noticed in the code that this is set up for multiple obstacles, and that all that that entailed was simply adding the p value generated by each individual obstacle. It’s super easy! Here’s a very basic graphic showing how the DMP system can avoid obstacles:

So here there’s just a basic attractor system (DMP without a forcing function) trying to move from the center position to 8 targets around the unit circle (which are highlighted in red), and there are 4 obstacles that I’ve thrown onto the field (black x’s). As you can see, the system successfully steers way clear of the obstacles while moving towards the target!

We must all use this power wisely.

Edit: Making the power yours is now easier than ever! You can check out this code at my pydmps GitHub repo. Clone the repo and after you python setup.py develop, change directories into the examples folder and run the avoid_obstacles.py file. It will randomly generate 5 targets in the environment and perform 20 movements, giving you something looking like this:

## Using VREP for simulation of force-controlled models

I’ve been playing around a bit with different simulators, and one that we’re a big fan of in the lab is VREP. It’s free for academics and you can talk to them about licences if you’re looking for commercial use. I haven’t actually had much experience with it before myself, so I decided to make a simple force controlled arm model to get experience using it. All in all, there were only a few weird API things that I had to get through, and once you have them down it’s pretty straight forward. This post is going to be about the steps that I needed to take to get things all set up. For a more general start-up on VREP check out All the code in this post and the model I use can be found up on my GitHub.

Getting the right files where you need them

As discussed in the remote API overview, you’ll need three files in whatever folder you want to run your Python script from to be able to hook into VREP remotely:

• remoteApi.dll, remoteApi.dylib or remoteApi.so (depending on what OS you’re using)
• vrep.py
• vrepConstants.py

You can find these files inside your VREP_HOME/programming/remoteApiBindings/python/python and VREP_HOME/programming/remoteApiBindings/lib/lib folders. Make sure that these files are in whatever folder you’re running your Python scripts from.

The model

It’s easy to create a new model to mess around with in VREP, so that’s the route I went, rather than importing one of their pre-made models and having some sneaky parameter setting cause me a bunch of grief. You can just right click->add then go at it. There are a bunch of tutorials so I’m not going to go into detail here. The main things are:

• Make sure joints are in ‘Torque/force’ mode.
• Make sure that joint ‘Motor enabled’ property is checked. The motor enabled property is in the ‘Show dynamic properties dialogue’ menu, which you find when you double click on the joint in the Scene Hierarchy.
• Know the names of the joints as shown in the Scene Hierarchy.

So here’s a picture:

where you can see the names of the objects in the model highlighted in red, the Torque/force selection highlighted in blue, and the Motor enabled option highlighted in green. And of course my beautiful arm model in the background.

Setting up the continuous server

The goal is to connect VREP to Python so that we can send torques to the arm from our Python script and get the feedback necessary to calculate those torques. There are a few ways to set up a remote connection in VREP.

The basic one is they have you add a child script in VREP and attach it to an object in the world that sets up a port and then you hit go on your simulation and can then run your Python script to connect in. This gets old real fast. Fortunately, it’s easy to automate everything from Python so that you can connect in, start the simulation, run it for however long, and then stop the simulation without having to click back and forth.

The first step is to make sure that your remoteApiConnections.txt file in you VREP home directory is set up properly. A continuous server should be set up by default, but doesn’t hurt to double check. And you can take the chance to turn on debugging, which can be pretty helpful. So open up that file and make sure it looks like this:

portIndex1_port                 = 19997
portIndex1_debug                = true
portIndex1_syncSimTrigger       = true


Once that’s set up, when VREP starts we can connect in from Python. In our Python script, first we’ll close any open connections that might be around, and then we’ll set up a new connection in:

import vrep

# close any open connections
vrep.simxFinish(-1)
# Connect to the V-REP continuous server
clientID = vrep.simxStart('127.0.0.1', 19997, True, True, 500, 5)

if clientID != -1: # if we connected successfully
print ('Connected to remote API server')


So once the connection is made, we check the clientID value to make sure that it didn’t fail, and then we carry on with our script.

Synchronizing

By default, VREP will run its simulation in its own thread, and both the simulation and the controller using the remote API will be running simultaneously. This can lead to some weird behaviour as things fall out of synch etc etc, so what we want instead is for the VREP sim to only run one time step for each time step the controller runs. To do that, we need to set VREP to synchronous mode. So the next few lines of our Python script look like:

    # --------------------- Setup the simulation

vrep.simxSynchronous(clientID,True)


and then later, once we’ve calculated our control signal, sent it over, and want the simulation to run one time step forward, we do that by calling

    # move simulation ahead one time step
vrep.simxSynchronousTrigger(clientID)


Get the handles to objects of interest

OK the next chunk of code in our script uses the names of our objects (as specified in the Scene Hierarchy in VREP) to get an ID for each which to identify which object we want to send a command to or receive feedback from:

    joint_names = ['shoulder', 'elbow']
# joint target velocities discussed below
joint_target_velocities = np.ones(len(joint_names)) * 10000.0

# get the handles for each joint and set up streaming
joint_handles = [vrep.simxGetObjectHandle(clientID,
name, vrep.simx_opmode_blocking)[1] for name in joint_names]

# get handle for target and set up streaming
_, target_handle = vrep.simxGetObjectHandle(clientID,
'target', vrep.simx_opmode_blocking)


Set dt and start the simulation

And the final thing that we’re going to do in our simulation set up is specify the timestep that we want to use, and then start the simulation. I found this in a forum post, and I must say whatever VREP lacks in intuitive API their forum moderators are on the ball. NOTE: To use a custom time step you have to also set the dt option in the VREP simulator to ‘custom’. The drop down is to the left of the ‘play’ arrow, and if you don’t have it set to ‘custom’ you won’t be able to set the time step through Python.

    dt = .01
vrep.simxSetFloatingParameter(clientID,
vrep.sim_floatparam_simulation_time_step,
dt, # specify a simulation time step
vrep.simx_opmode_oneshot)

# --------------------- Start the simulation

# start our simulation in lockstep with our code
vrep.simxStartSimulation(clientID,
vrep.simx_opmode_blocking)


Main loop

For this next chunk I’m going to cut out everything that’s not VREP, since I have a bunch of posts explaining the control signal derivation and forward transformation matrices.

So, once we’ve started the simulation, I’ve set things up for the arm to be controlled for 1 second and then for the simulation to stop and everything shut down and disconnect.

    while count < 1: # run for 1 simulated second

# get the (x,y,z) position of the target
_, target_xyz = vrep.simxGetObjectPosition(clientID,
target_handle,
-1, # retrieve absolute, not relative, position
vrep.simx_opmode_blocking)
if _ !=0 : raise Exception()
track_target.append(np.copy(target_xyz)) # store for plotting
target_xyz = np.asarray(target_xyz)

q = np.zeros(len(joint_handles))
dq = np.zeros(len(joint_handles))
for ii,joint_handle in enumerate(joint_handles):
# get the joint angles
_, q[ii] = vrep.simxGetJointPosition(clientID,
joint_handle,
vrep.simx_opmode_blocking)
if _ !=0 : raise Exception()
# get the joint velocity
_, dq[ii] = vrep.simxGetObjectFloatParameter(clientID,
joint_handle,
2012, # ID for angular velocity of the joint
vrep.simx_opmode_blocking)
if _ !=0 : raise Exception()


In the above chunk of code, I think the big thing to point out is that I’m using vrep.simx_opmode_blocking in each call, instead of vrep.simx_opmode_buffer. The difference is that you for sure get the current values of the simulation when you use blocking, and you can be behind a time step using buffer.

Aside from that the other notable things are I raise an exception if the first parameter (which is the return code) is ever not 0, and that I use simxGetObjectFloatParameter to get the joint velocity instead of simxGetObjectVelocity, which has a rotational velocity component. Zero is the return code for ‘everything worked’, and if you don’t check it and have some silly things going on you can be veeerrrrryyy mystified when things don’t work. And what simxGetObjectVelocity returns is the rotational velocity of the joint relative to the world frame, and not the angular velocity of the joint in its own coordinates. That was also a briefly confusing.

So the next thing I do is calculate u, which we’ll skip, and then we need to set the forces for the joint. This part of the API is real screwy. You can’t set the force applied to the joint directly. Instead, you have to set the target velocity of the joint to some really high value (hence that array we made before), and then modulate the maximum force that can be applied to that joint. Also important: When you want to apply a force in the other direction, you change the sign on the target velocity, but keep the force sign positive.

        # ... calculate u ...

for ii,joint_handle in enumerate(joint_handles):
# get the current joint torque
_, torque = \
vrep.simxGetJointForce(clientID,
joint_handle,
vrep.simx_opmode_blocking)
if _ !=0 : raise Exception()

# if force has changed signs,
# we need to change the target velocity sign
if np.sign(torque) * np.sign(u[ii]) < 0:
joint_target_velocities[ii] = \
joint_target_velocities[ii] * -1
vrep.simxSetJointTargetVelocity(clientID,
joint_handle,
joint_target_velocities[ii], # target velocity
vrep.simx_opmode_blocking)
if _ !=0 : raise Exception()

# and now modulate the force
vrep.simxSetJointForce(clientID,
joint_handle,
abs(u[ii]), # force to apply
vrep.simx_opmode_blocking)
if _ !=0 : raise Exception()

# move simulation ahead one time step
vrep.simxSynchronousTrigger(clientID)
count += dt


So as you can see we check the current torque, see if we need to change the sign on the target velocity, modulate the maximum allowed force, and then finally step the VREP simulation forward.

Conclusions

And there you go! Here’s an animation of it in action (note this is a super low quality gif and it looks way better / smoother when actually running it yourself):

All in all, VREP has been enjoyable to work with so far. It didn’t take long to get things moving and off the ground, the visualization is great, and I haven’t even scratched the surface of what you can do with it. Best of all (so far) you can fully automate everything from Python. Hopefully this is enough to help some people get their own models going and save a few hours and headaches! Again, the full code and the model are up on my GitHub.

Nits

• When you’re applying your control signal, make sure you test each joint in isolation, to make sure your torques push things in the direction you think they do. I had checked the rotation direction in VREP, but the control signal for both joints ended up needing to be multiplied by -1.
• Another nit when you’re building your model, if you use the rotate button from the VREP toolbar on your model, wherever that joint rotates to is now 0 degrees. If you want to set the joint to start at 45 degrees, instead double click and change Pos[deg] option inside ‘Joint’ in Scene Object Properties.

## Deep learning for control using augmented Hessian-free optimization

Traditionally, deep learning is applied to feed-forward tasks, like classification, where the output of the network doesn’t affect the input to the network. It is a decidedly harder problem when the output is recurrently connected such that network output affects the input. Because of this application of deep learning methods to control was largely unexplored until a few years ago. Recently, however, there’s been a lot of progress and research in this area. In this post I’m going to talk about an implementation of deep learning for control presented by Dr. Ilya Sutskever in his thesis Training Recurrent Neural Networks.

In his thesis, Dr. Sutskever uses augmented Hessian-free (AHF) optimization for learning. There are a bunch of papers and posts that go into details about AHF, here’s a good one by Andrew Gibiansky up on his blog, that I recommend you check out. I’m not going to really talk much here about what AHF is specifically, or how it differs from other methods, if you’re unfamiliar there are lots of places you can read up on it. Quickly, though, AHF is kind of a bag of tricks you can use with a fast method for estimating the curvature of the loss function with respect to the weights of a neural network, as well as the gradient, which allows it to make larger updates in directions where the loss function doesn’t change quickly. So rather than estimating the gradient and then doing a small update along each dimension, you can make the size of your update large in directions that change slowly and small along dimensions where things change quickly. And now that’s enough about that.

In this post I’m going to walk through using a Hessian-free optimization library (version 0.3.8) written by my compadre Dr. Daniel Rasmussen to train up a neural network to train up a 2-link arm, and talk about the various hellish gauntlets you need run to get something that works. Whooo! The first thing to do is install this Hessian-free library, linked above.

I’ll be working through code edited a bit for readability, to find the code in full you can check out the files up on my GitHub.

Build the network

Dr. Sutskever specified the structure of the network in his thesis to be 4 layers: 1) a linear input layer, 2) 100 Tanh nodes, 3) 100 Tanh nodes, 4) linear output layer. The network is connected up with the standard feedforward connections from 1 to 2 to 3 to 4, plus recurrent connections on 2 and 3 to themselves, plus a ‘skip’ connection from layer 1 to layer 3. Finally, the input to the network is the target state for the plant and the current state of the plant. So, lots of recursion! Here’s a picture:

The output layer connects in to the plant, and, for those unfamiliar with control theory terminology, ‘plant’ just means the system that you’re controlling. In this case an arm simulation.

Before we can go ahead and set up the network that we want to train, we also need to specify the loss function that we’re going to be using during training. The loss function in Ilya’s thesis is a standard one:

$L(\theta) = \sum\limits^{N-1}\limits_{t=0} \ell(\textbf{u}_t) + \ell_f(\textbf{x}_N),$
$\ell(\textbf{u}_t) = \alpha \frac{||\textbf{u}_t||^2}{2},$
$\ell_f(\textbf{x}_N) = \frac{||\textbf{x}^* - \textbf{x}_t||^2}{2}$

where $L(\theta)$ is the total cost of the trajectory generated with $\theta$, the set of network parameters, $\ell(\textbf{u})$ is the immediate state cost, $\ell_f(\textbf{x})$ is the final state cost, $\textbf{x}$ is the state of the arm, $\textbf{x}^*$ is the target state of the arm, $\textbf{u}$ is the control signal (torques) that drives the arm, and $\alpha$ is a gain value.

To code this up using the hessianfree library we do:

from hessianfree import RNNet
from hessianfree.nonlinearities import (Tanh, Linear, Plant)
from hessianfree.loss_funcs import SquaredError, SparseL2

l2gain = 10e-3 * dt # gain on control signal loss
rnn = RNNet(
# specify the number of nodes in each layer
shape=[num_states * 2, 96, 96, num_states, num_states],
# specify the function of the nodes in each layer
layers=[Linear(), Tanh(), Tanh(), Linear(), plant],
# specify the layers that have recurrent connections
rec_layers=[1,2],
# specify the connections between layers
conns={0:[1, 2], 1:[2], 2:[3], 3:[4]},
# specify the loss function
loss_type=[
# squared error between plant output and targets
SquaredError(),
# penalize magnitude of control signal (output of layer 3)
SparseL2(l2gain, layers=[3])],
use_GPU=True)


Note that if you want to run it on your GPU you’ll need PyCuda and sklearn installed. And a GPU.

An important thing to note as well is that in Dr. Sustkever’s thesis when we’re calculating the squared error of the distance from the arm state to the target, this is measured in joint angles. So it’s kind of a weird set up to be looking at the movement of the hand but have your cost function in joint-space instead of end-effector space, but it definitely simplifies training by making the cost more directly relatable to the control signal. So we need to calculate the joint angles of the arm that will have the hand at different targets around a circle. To do this we’ll take advantage of our inverse kinematics solver from way back when, and use the following code:

def gen_targets(arm, n_targets=8, sig_len=100):
#Generate target angles corresponding to target
#(x,y) coordinates around a circle
import scipy.optimize

x_bias = 0
if arm.DOF == 2:
y_bias = .35
dist = .075
elif arm.DOF == 3:
y_bias = .5
dist = .2

# set up the reaching trajectories around circle
targets_x = [dist * np.cos(theta) + x_bias \
for theta in np.linspace(0, np.pi*2, 65)][:-1]
targets_y = [dist * np.sin(theta) + y_bias \
for theta in np.linspace(0, np.pi*2, 65)][:-1]

joint_targets = []
for ii in range(len(targets_x)):
joint_targets.append(arm.inv_kinematics(xy=(targets_x[ii],
targets_y[ii])))
targs = np.asarray(joint_targets)

# repeat the targets over time
for ii in range(targs.shape[1]-1):
targets = np.concatenate(
(np.outer(targs[:, ii], np.ones(sig_len))[:, :, None],
np.outer(targs[:, ii+1], np.ones(sig_len))[:, :, None]), axis=-1)
targets = np.concatenate((targets, np.zeros(targets.shape)), axis=-1)
# only want to penalize the system for not being at the
# target at the final state, set everything before to np.nan
targets[:, :-1] = np.nan

return targets


And you can see in the last couple lines that to implement the distance to target as a final state cost penalty only we just set all of the targets before the final time step equal to np.nan. If we wanted to penalize distance to target throughout the whole trajectory we would just comment that line out.

Create the plant

You’ll notice in the code that defines our RNN I set the last layer of the network to be plant, but that that’s not defined anywhere. Let’s talk. There are a couple of things that we’re going to need to incorporate our plant into this network and be able to use any deep learning method to train it. We need to be able to:

1. Simulate the plant forward; i.e. pass in input and get back the resulting plant state at the next timestep.
2. Calculate the derivative of the plant state with respect to the input; i.e. how do small changes in the input affect the state.
3. Calculate the derivative of the plant state with respect to the previous state; i.e. how do small changes in the plant state affect the state at the next timestep.
4. Calculate the derivative of the plant output with respect to its state; i.e. how do small changes in the current position of the state affect the output of the plant.

So 1 is easy, we have the arm simulations that we want already, they’re up on my GitHub. Number 4 is actually trivial too, because the output of our plant is going to be the state itself, so the derivative of the output with respect to the state is just the identity matrix.

For 2 and 3, we’re going to need to calculate some derivatives. If you’ve read the last few posts you’ll note that I’m on a finite differences kick. So let’s get that going! Because no one wants to calculate derivatives!

Important note, the notation in these next couple pieces of code is going to be a bit different from my normal notation because they’re matching with the hessianfree library notation, which is coming from a reinforcement learning literature background instead of a control theory background. So, s is the state of the plant, and x is the input to the plant. I know, I know. All the same, make sure to keep that in mind.

# calculate ds0/dx0 with finite differences
d_input_FD = np.zeros((x.shape[0], # number of trials
x.shape[1], # number of inputs
self.state.shape[1])) # number of states
for ii in range(x.shape[1]):
# calculate state adding eps to x[ii]
self.reset_plant(self.prev_state)
inc_x = x.copy()
inc_x[:, ii] += self.eps
self.activation(inc_x)
state_inc = self.state.copy()
# calculate state subtracting eps from x[ii]
self.reset_plant(self.prev_state)
dec_x = x.copy()
dec_x[:, ii] -= self.eps
self.activation(dec_x)
state_dec = self.state.copy()

d_input_FD[:, :, ii] = \
(state_inc - state_dec) / (2 * self.eps)
d_input_FD = d_input_FD[..., None]


Alrighty. First we create a tensor to store the results. Why is it a tensor? Because we’re going to be doing a bunch of runs at once. So our state dimensions are actually trials x size_input. When we then take the partial derivative, we end up with trials many size_input x size_state matrices. Then we increase each of the parameters of the input slightly one at a time and store the results, decrease them all one at a time and store the results, and compute our approximation of the gradient.

Next we’ll do the same for calculating the derivative of the state with respect to the previous state.

# calculate ds1/ds0
d_state_FD = np.zeros((x.shape[0], # number of trials
self.state.shape[1], # number of states
self.state.shape[1])) # number of states
for ii in range(self.state.shape[1]):
# calculate state adding eps to self.state[ii]
state = np.copy(self.prev_state)
state[:, ii] += self.eps
self.reset_plant(state)
self.activation(x)
state_inc = self.state.copy()
# calculate state subtracting eps from self.state[ii]
state = np.copy(self.prev_state)
state[:, ii] -= self.eps
self.reset_plant(state)
self.activation(x)
state_dec = self.state.copy()

d_state_FD[:, :, ii] = \
(state_inc - state_dec) / (2 * self.eps)
d_state_FD = d_state_FD[..., None]


Great! We’re getting closer to having everything we need. Another thing we need is a wrapper for running our arm simulation. It’s going to look like this:

def activation(self, x):
state = []
# iterate through and simulate the plant forward
# for each trial
for ii in range(x.shape[0]):
self.arm.reset(q=self.state[ii, :self.arm.DOF],
dq=self.state[ii, self.arm.DOF:])
self.arm.apply_torque(u[ii])
state.append(np.hstack([self.arm.q, self.arm.dq]))
state = np.asarray(state)

self.state = self.squashing(state)


This is definitely not the fastest code to run. Much more ideally we would put the state and input into vectors and do a single set of computations for each call to activation rather than having that for loop in there. Unfortunately, though, we’re not assuming that we have access to the dynamics equations / will be able to pass in vector states and inputs.

Squashing
Looking at the above code that seems pretty clear what’s going on, except you might notice that last line calling self.squashing. What’s going on there?

The squashing function looks like this:

def squashing(self, x):
index_below = np.where(x < -2*np.pi)
x[index_below] = np.tanh(x[index_below]+2*np.pi) - 2*np.pi
index_above = np.where(x > 2*np.pi)
x[index_above] = np.tanh(x[index_above]-2*np.pi) + 2*np.pi
return x


All that’s happening here is that we’re taking our input, and doing nothing to it as long as it doesn’t start to get too positive or too negative. If it does then we just taper it off and prevent it from going off to infinity. So running a 1D vector through this function we get:

This ends up being a pretty important piece of the code here. Basically it prevents wild changes to the weights during learning to result in the system breaking down. So the state of the plant can’t go off to infinity and cause an error to be thrown, stopping our simulation. But because the target state is well within the bounds of where the squashing function does nothing, post-training we’ll still be able to use the resulting network to control a system that doesn’t have this fail safe built in. Think of this function as training wheels that catch you only if you start falling.

With that, we no have pretty much all of the parts necessary to begin training our network!

Training the network

We’re going to be training this network on the centre-out reaching task, where you start at a centre point and reach to a bunch of target locations around a circle. I’m just going to be re-implementing the task as it was done in Dr. Sutskever’s thesis, so we’ll have 64 targets around the circle, and train using a 2-link arm. Here’s the code that we’ll use to actually run the training:

for ii in range(last_trial+1, num_batches):
# train a bunch of batches using the same input every time
# to allow the network a chance to minimize things with
# stable input (speeds up training)
err = rnn.run_batches(plant, targets=None,
max_epochs=batch_size,
optimizer=HessianFree(CG_iter=96, init_damping=100))

# save the weights to file, track trial and error
# err = rnn.error(inputs)
err = rnn.best_error
name = 'weights/rnn_weights-trial%04i-err%.3f'%(ii, err)
np.savez_compressed(name, rnn.W)


A quick aside: if you want to run this code yourself, get a real good computer, have an arm simulation ready, the hessianfree Python library installed, and download and run this train_hf.py file. (Note: I used version 0.3.8 of the hessianfree library, which you can install using pip install hessianfree==0.3.8) This will start training and save the weights into a weights/ folder, so make sure that that exists in the same folder as train_hf.py. If you want to view the results of the training at any point run the plot_error.py file, which will load in the most recent version of the weights and plot the error so far. If you want to generate an animated plot like I have below run gen_animation_plots.py and then the last command from my post on generating animated gifs.

Another means of seeing the results of your trained up network is to use the controller I’ve implemented in my controls benchmarking suite, which looks for a set of saved weights in the controllers/weights folder, and will load it in and use it to generate command signals for the arm by running it with

python run.py arm2_python ahf reach --dt=1e-2


where you replace arm2_python with whatever arm model you trained your model on. Note the --dt=1e-2 flag, that is important because the model was trained with a .01 timestep and things get a bit weird if you suddenly change the dynamics on the controller.

OK let’s look at some results!

Results

OK full discretion, these results are not optimizing the cost function we discussed above. They’re implementing a simpler cost function that only looks at the final state, i.e. it doesn’t penalize the magnitude of the control signal. I did this because Dr. Sutskever says in his thesis he was able to optimize with just the final state cost using much smaller networks. I originally looked at neurons with 96 neurons in each layer, and it just took forgoddamnedever to run. So after running for 4 weeks (not joking) and needing to make some more changes I dropped the number of neurons and simplified the task.

The results below are from running a network with 32 neurons in each layer controlling this 2-link arm, and took another 4-5 weeks to train up.

Hey that looks good! Not bad, augmented Hessian-free learning, not bad. It had pretty consistent (if slow) decline in the error rate, with a few crazy bumps from which it quickly recovered. Also take note that each training iteration is actually 32 runs, so it’s not 12,50-ish runs it’s closer to 400,000 training runs that it took to get here.

One biggish thing that was a pain was that it turns out that I only trained the neural network for reaching in the one direction, and when you only train it to reach one way it doesn’t generalize to reaching back to the starting point (which, fair enough). But, I didn’t realize this until I was took the trained network and ran it in the benchmarking code, at which point I was not keen to redo all of the training it took to get the neural network to the level of accuracy it was at under a more complicated training set. The downside of this is that even though I’ve implemented a controller that takes in the trained network and uses it to control the arm, to do the reaching task I have to just do a hard reset after the arm reaches the target, because it can’t reach back to the center, like all the other controllers. All the same, here’s an animation of the trained up AHF controller reaching to 8 targets (it was trained on all 64 above though):

Things don’t always go so smoothly, though. Here’s results from another training run that took around 2-3 weeks, and uses a different 2-link arm model (translated from Matlab code written by Dr. Emo Todorov):

What I found frustrating about this was that if you look at the error over time then this arm is doing as well or better than the previous arm at a lot of points. But the corresponding trajectories look terrible, like something you would see in a horror movie based around getting good machine learning results. This of course comes down to how I specified the cost function, and when I looked at the trajectories plotted over time the velocity of the arm is right at zero at the final time step, which it is not quiiiitte the case for the first controller. So this second network has found a workaround to minimize the cost function I specified in a way I did not intend. To prevent this, doing something like weighting the distance to target heavier than non-zero velocity would probably work. Or possibly just rerunning the training with a different random starting point you could get out a better controller, I don’t have a great feel for how important the random initialization is, but I’m hoping that it’s not all too important and its effects go to zero with enough training. Also, it should be noted I’ve run the first network for 12,500 iterations and the second for less than 6,000, so I’ll keep letting them run and maybe it will come around. The first one looked pretty messy too until about 4,000 iterations in.

Training regimes

Frustratingly, the way that you train deep networks is very important. So, very much like the naive deep learning network trainer that I am, I tried the first thing that pretty much anyone would try:

• run the network,
• update the weights,
• repeat.

This is what I’ve done in the results above. And it worked well enough in that case.

If you remember back to the iLQR I made a little while ago, I was able to change the cost function to be

$L(\theta) = \sum\limits^{N-1}\limits_{t=0} \ell(\textbf{u}_t) + \ell_f(\textbf{x}_N),$
$\ell(\textbf{u}_t, \textbf{x}_t) = \alpha \frac{||\textbf{u}_t||^2}{2} + \frac{||\textbf{x}^* - \textbf{x}_t||^2}{2},$
$\ell_f(\textbf{x}_N) = \frac{||\textbf{x}^* - \textbf{x}_t||^2}{2}$

(i.e. to include a penalty for distance to target throughout the trajectory and not just at the final time step) which resulted in straighter trajectories when controlling the 2-link arm. So I thought I would try this here as well. Sadly (incredibly sadly), this was fairly fruitless. The network didn’t really learn or improve much at all.

After much consideration and quandary on my part, I talked with Dr. Dan and he suggested that I try another method:

• run the network,
• record the input,
• hold the input constant for a few batches of weight updating,
• repeat.

This method gave much better results. BUT WHY? I hear you ask! Good question. Let me give giving explanation a go.

Essentially, it’s because the cost function is more complex now. In the first training method, the output from the plant is fed back into the network as input at every time step. When the cost function was simpler this was OK, but now we’re getting very different input to train on at every iteration. So the system is being pulled in different directions back and forth at every iteration. In the second training regime, the same input is given several times in a row, which let’s the system follow the same gradient for a few training iterations before things change again. In my head I picture this as giving the algorithm a couple seconds to catch its breath dunking it back underwater.

This is a method that’s been used in a bunch of places recently. One of the more high-profile instances is in the results published from DeepMind on deep RL for control and for playing Go. And indeed, it also works well here.

To implement this training regime, we set up the following code:

for ii in range(last_trial+1, num_batches):

# run the plant forward once
rnn.forward(input=plant, params=rnn.W)

# get the input and targets from above rollout
inputs = plant.get_vecs()[0].astype(np.float32)
targets = np.asarray(plant.get_vecs()[1], dtype=np.float32)

# train a bunch of batches using the same input every time
# to allow the network a chance to minimize things with
# stable input (speeds up training)
err = rnn.run_batches(inputs, targets, max_epochs=batch_size,
optimizer=HessianFree(CG_iter=96, init_damping=100))

# save the weights to file, track trial and error
# err = rnn.error(inputs)
err = rnn.best_error
name = 'weights/rnn_weights-trial%04i-err%.3f'%(ii, err)
np.savez_compressed(name, rnn.W)


So you can see that we do one rollout with the weights, then go in and get the inputs and targets that were used in that rollout, and start training the network while holding those constant for batch_size epochs (training sessions). From a little bit of messing around I’ve found batch_size=32 to be a pretty good number. So then it runs 32 training iterations where it’s updating the weights, and then saves those weights (because we want a loooottttt of check-points) and then restarts the loop.

Embarrassingly, I’ve lost my simulation results from this trial, somehow…so I don’t have any nice plots to back up the above, unfortunately. But since this is just a blog post I figured I would at least talk about it a little bit, since people might still find it useful if they’re just getting into the field like me. and just update this post whenever I re-run them. If I rerun them.

What I do have, however, are results where this method doesn’t work! I tried this with the simpler cost function, that only looks at the final state distance from the target, and it did not go so well. Let’s look at that one!

My guess here is basically that the system has gotten to a point where it’s narrowed things down in the parameter space and now when you run 32 batches it’s overshooting. It needs feedback about its updates after every update at this point. That’s my guess, at least. So it could be the case that for more complex cost functions you’d want to train it while holding the input constant for a while, and then when the error starts to plateau switch to updating the input after every parameter update.

Conclusions

All in all, AHF for training neural networks in control is pretty awesome. There are of course still some major hold-backs, mostly related to how long it takes to train up a network, and having to guess at effective training regimes and network structures etc. But! It was able to train up a relatively small neural network to move an arm model from a center point to 64 targets around a circle, with no knowledge of the system under control at all. In Dr. Sutskever’s thesis he goes on to use the same set up under more complicated circumstances, such as when there’s a feedback delay, or a delay on the outgoing control signal, and unexpected noise etc, so it is able to learn under a number of different, fairly complex situations. Which is pretty slick.

Related to the insane training time required, I very easily could be missing some basic thing that would help speed things up. If you, reader, get ambitious and run the code on your own machine and find out useful methods for speeding up the training please let me know! Personally, my plan is to next investigate guided policy search, which seems like it’s found a way around this crazy training time.